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“Static concepts proved to be very effective intellectual tranquilizers.”
L. L. Whyte

“Our study has revealed Mathematics as an array of forms, codify-
ing ideas extracted from human activates and scientific problems and
deployed in a network of formal rules, formal definitions, formal axiom
systems, explicit theorems with their careful proof and the manifold in-
terconnections of these forms...[This view] might be called formal func-
tionalism.”

Saunders Mac Lane

Let’s dive right in then, shall we? What can we say about the array of forms
MacLane speaks of?

Claim (Tentative). Category theory is about the formal aspects of this array of
forms.

Commentary: It might be tempting to put the brakes on right away and first grab
hold of what we mean by formal aspects. Instead, rather than trying to present
“the formal” as the object of study and category theory as our instrument,
we would nudge the reader to consider another perspective. Category theory
itself defines formal aspects in much the same way that physics defines physical
concepts or laws define legal (and correspondingly illegal) aspects: it embodies
them. When we speak of what is formal/physical/legal we inescapably speak of
category/physical/legal theory, and vice versa. Thus we pass to the somewhat
grammatically awkward revision of our initial claim:

Claim (Tentative). Category theory is the formal aspects of this array of forms.

Commentary: Let’s unpack this a little bit. While individual forms are themselves
tautologically formal, arrays of forms and everything else networked in a system
lose this tautological formality. In the case of Mathematics, as Mac Lane states,
we have ideas and latent/explicit physical metaphors and independent axiom
systems, etc. that make Mathematics more than just one form. So Mathematics
on the whole is not just formal, yet when we theorize its formal aspects we are
doing category theory. In fact we can use category theory to study the formal
aspects of anything: physics, logic, politics, programming, psychology, etc. We
will call the “formal aspects of something” its structure.

Claim. Category theory is structure.



I hope you’ll bear with me while I endeavor to support this claim. We’ll
have fun along the way, and, of course, remember that it is the journey, the
transition, the process, that counts. Not the beginning (we’re already there) and
it is certainly not just the end. What counts is the change that takes us from
one to the other. This aphorism functions as an polite doorman to usher us into
our next section.

1 What is a Category?

“The universe is change...”
Marcus Aurelius

1.1 A literate aside

We will find that a category is an abstract concept built up from an abstract
idea of change. Taking a moment to briefly sympathize with the single-celled
narrator of one of Italian writer Italo Calvino’s short stories might well wet our
palate:

“Let’s begin this way, then: there is a cell, and this cell is a unicellular
organism, and this unicellular organism is me, and I know it, and I’m
pleased about it. Nothing special so far. Now let’s try to represent this
situation for ourselves in space and time. Time passes, and I, more and
more pleased with being in it and with being me, am also more and more
pleased that there is time, and that I am in time, or rather that time
passes and I pass time and time passes me, or rather I am pleased to be
contained in time, to be the content of time, or the container, in short,
to mark by being me the passing of time.”

Qfwfq in Mitosis by Italo Calvino

This is a strong sentiment. Qfwfq feels his very existence (“being me”) consists of
changes: marks in the passing of time. His identity is phenomenologically caught
up in changes in time.

But we aren’t just concerned with the identities of people, who seem to think
and exists in/through/with time. What about the identities of things, especially
non-physical things like justice or abelian groups? Can we abstract our idea
of change away from the seeming physicality of time? We can refer to another
story, where, rather than trying to describe the experience of the first cell, Qfwfq
attempts to describe the first thing, the first sign. He says:

What sort of sign? Its hard to explain because if I say sign to you,
you immediately think of a something that can be distinguished from a
something else, but nothing could be distinguished from anything there.
(Calvino, Cosmicomics 31)



That’s the idea! Changes in time are but one instance of abstract differences,
and importantly we understand abstract differences as processes of distinguishing
something from something else. With these fundamentals hinted at, let’s take
our time being a hell of a lot more precise in the next section.

1.2 Defining a Category

The basic notion in a category is that of (changes/processes/creations of differ-
ence) that are technically called morphisms. We give a recursive definition:

Definition 1. A morphism f consists of two morphisms:

1. the source morphism s : f → A and
2. the target morphism t : f → B.

We refer to A as the domain of f and B as the codomain of f , using the notation
f : A→ B.

Commentary: In this recursive definition we are embodying the structure of
(changes/processes/creations of difference). In regular English the sentences are
a bit obtuse, but we can give versions for both temporal and nontemporal in-
stances respectively:

1. We can change a given change into either what we begin with or what we
end with when we perform that given change.

2. Given a difference we can differentiate something from something else.

Our definition of a morphism gives structure common between these two. Note
that in some literature, and sometimes here, morphisms are called arrows, since
drawn arrows represent them well.

Definition 2. If the domain of a morphism g : B → C is the codomain of
f : A→ B, then a composite morphism is defined as

(g ◦ f) : A→ C (1)

Commentary: It is often helpful to represent morphisms graphically in what is
called a “commutative diagram”
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g◦f // C



Commutative diagrams state that any path you take along the arrows (com-
posing them end to end with ◦) is equivalent to any other. This is a trivial
commutative diagram which simply states that g ◦ f = (g ◦ f).

Following our examples that instantiate things dynamically and statically,
examples of the structure of composite morphisms are:

1. the f change and then the g change
2. that distinguishing a first thing from a second and a second from a third will

also distinguish the first from the third.

Definition 3. Identity morphisms are defined as morphisms 1A : A → A
such that for any morphism f : A→ B

f ◦ 1A = f (2)

and for any morphism g : B → A

g = 1A ◦ g (3)

These are respectively known as the right and left identity properties.

Even with as little mathematics as has been presented we can investigate the
consequences of the above structure:

Theorem 1. Identity morphisms, if they exist, are unique.

Proof. If there are two identity morphisms 1A : A → A and eA : A → A, then
they are equal.

eA = eA ◦ 1A by the right identity of eA

= 1A. by the left identity of 1A

ut

We now have enough to define a category in full.

Definition 4. A Category C consists of morphisms such that

1. for every domain A and codomain B there are identity morphisms 1A and
1B.

2. there are all composite morphisms
3. composition is an associative operation, i.e. given morphisms f : A → B,

g : B → C, and h : C → D the following composites are equal

h ◦ (g ◦ f) = (h ◦ g) ◦ f : A→ D (4)

where parentheses notate the order of composition.

Since the identity morphisms are in one-to-one correspondence (due to the
uniqueness proof above) with the domains and codomains, we will often refer to
them as the objects of a category, as opposed to other non-identity morphisms.
This leads us to the traditional presentation of a category as objects with arrows
(morphisms) between them. It was important to introduce objects at this later
stage to highlight how they are not independent of morphisms but rather are
just a particular kind of morphism.



2 Some Explicit Examples of Categories

It is hard to overstate how strong the case is for the idea that categories are
everywhere, so, while there is a lot more to category theory than just the basic
definition of a category, there are already plenty of examples worth illustrating
to reinforce this definition. In the following sections we will look at the structure
of numbers through finite categories, symmetries through groups and groupoids,
membership through sets, logic through the category of proofs, and at some
other examples of categories found throughout mathematics.

2.1 Number: Finite Categories

We introduce one diagrammatic representation of categories (called quivers),
which is to write their objects (the identity morphisms) as vertices in a graph
with arrows pointing from domains to codomains representing the morphisms.
Quivers also relax the requirement of closure under composition, as in the dia-
grams we leave some morphisms generated by composition implicit. These first
few examples should give you the hang of it.

Example 1. The category 0 has no morphisms.

Commentary: This is the formal aspect of Qfwfq’s first sign and we notice that
it is completely empty. There is nothing to compare it to, and it has no structure
of its own. Claim: Nothing is 0.

Example 2. The category 1 is a single morphism 1∗ : ∗ → ∗. This is the same as
saying that 1 has a single object ∗. A diagram for this category is correspondingly
simple:

∗

Commentary: This category structures “the point” by a single relation. The
structure of symmetric Self (domain) and Other (codomain) that defines a single
identity: 1.

Example 3. The category 2 is three morphisms: two identity morphisms (ob-
jects) and a third morphism f : A → B between them. This is diagrammed
as

A // B

We can easily check that this meets the requirements for a category given in
Definition 4:

1. There is only one domain and codomain and each has an identity morphism.
2. We use the definitions of identity morphisms to show that all composite

morphisms are already in the category. Another way to note this is to say
that these three morphisms are closed under composition. There are two
possible compositions: f ◦ 1A and 1B ◦ f . Using the definitions of identities
1A and 1B we know that f ◦ 1A = f and 1B ◦ f = f , which is indeed a
morphism already in the category.



3. It can be similarly shown that the definitions of identities also mean compo-
sition is associative.

Commentary: The claim here is that to understand two (for two to formally and
functionally exist), we use three relationships with the structure of 2.

Example 4. The category 3 is six morphisms: three identity morphisms (objects)
and three morphisms f : A → B, g : B → C, h : A → C between them. We’ve
seen a similar diagram before

B
g

��
A
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??

h // C

Remembering the requirement that every composition of morphisms must be in
the diagram, we recognize that it must be the case that h = g ◦ f .

Example 5. The category 4 is ten morphisms with the following diagram. Here
we will label the objects with numbers for suggestive reasons.

1
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3

What these examples of finite categories are beginning to define is the struc-
ture of ordinal numbers. Ordinal numbers are numbers that describe the position
of something in a sequence: first (1), second (2), third (3), fourth (4), and so
on.1

Example 6. The category n is n(n+ 1)/2 morphisms that follow the pattern set
out above and structures ordinal numbers.

Commentary: This means that these categories give the structure for anything
that is ordered and so counted in that order.2

1 In set theoretic mathematics this structure is that of a well ordered set, where we
define a binary relation allowing us to compare pairs and rank one above the other.

2 Phenomenologically it might seem that all differences are ordered in that we appre-
hend them in a time ordering, but in fact it is only when we count them that we
order differences. Before that a simple analogy could be that we process in parallel,
but we don’t need to rely on vague analogies. In other words, it’s good that we have
structures other than just finite categories (ordinal numbers) to talk about or we
could get mired in pseudo-metaphysical confusions that simply arise from not having
a general enough structural understanding of number.



2.2 Properties: Concrete Universals

To provide a first brief example of a non-mathematically bound category we will
look to how categories structure concrete universals in philosophy.

Example 7. The category of properties Prop has things as objects and property
relations as morphisms.

Commentary: What we mean by property relations is that the morphism f :
A → B means A has a property of B. We could read an arrow between A and
B as “A shares a property with B”. As an example, consider “a white picket
fence”, which a thing and so is an object in Prop. There is a property relation
(morphism) from “white picket fence” to “white paper” and a property relation
from “white paper” to “whiteness.” Clearly, there is also a composed property
relation from “white picket fence” to “whiteness” and it is also clear that such
relations will be associative. In (some) philosophy, a universal perfectly exhibits
a particular property. For example, whiteness is that which is perfectly white.
Category theory structures universals as universal constructions, one example
of which is as limits, as processes of eliminating imperfections to approach a
universal. We won’t go into the definitions of universal constructions right now,
but will merely point out that universals constructed in Prop are necessarily
concrete universals.

The reason Prop structures concrete universals, is that all objects in Prop
(including universals such as “whiteness”) have themselves as properties, as given
by their identity morphism.3 This contrasts with abstract universals that are not
properties of themselves and that are structured by categories of sets with subset
inclusions as morphisms.4

Note 1. Let’s take a moment to remember that in and of itself this doesn’t say
anything about whether this philosophical position is true or even reasonable.
What is does say is that if you want to work consistently within this view (with all
its entailments, such as that “whiteness” is a thing), then Prop is the structure
for you.

Example 8. In critical theory, there is much debate over ideas of universality and
hegemony and it wouldn’t be a bad idea to look at these discussions structurally.
Just as a trite and self-contained example let’s take the following claim that is
made on Wikipedia regarding Butler’s criticism of Laclau’s in [1]:

“In the psychoanalytic theory of Jacques Lacan, ‘the Real’ is regarded
as the limit of representation. Laclau draws upon this concept of the

3 In fact, remembering the contingency of objects in our definition for a category, they
are identity morphisms.

4 Set theory deals with abstract universals to avoid Russels paradox, which emerges
with regard to the set of all sets that are not sets of themselves. This paradoxical
set an only exist if ”set-ness” is a concrete universal. As we can build set theory
within category theory, category theory can structure both abstract and concrete
universals.



Real to justify his claim that political identities are incomplete. Butler
criticizes this because, according to her, it elevates the Lacanian Real
into a transcendental, ahistorical category. However, Laclau’s response
to Butler on this point is that the Lacanian Real introduces a radical
disjunction into our idea of history - something which puts the whole
idea of a concept being ‘ahistorical’ radically into question (66). In other
words, for Lacan, there is no continuity to history and, therefore, there
can be no stable ‘ahistorical’ concepts.”

Commentary: The idea of the Real as a limit of representation clearly makes it
a universal.5 Thus Butler’s criticism of Laclau could be that Laclau is claiming
that the Real is an abstract universal, implying that he is working in some
category of history Hist (with events as objects and causality as morphisms)
that has a set-like structure. This is the structure that would be necessary to have
abstract historical universals. There would some fascinating ways to investigate
the consequences of seeing history in this way, e.g. do we mean that there exists
a certain kind of functor (see Section 3)

U : Hist→ Set ?

Laclau’s response is that the idea of the Lacanian Real instead questions the
presupposition that we can structure Hist as a category at all, since without
continuity we lose closure under composition of causalities. Such a demonstration
would also be interesting to see exhibited.

2.3 Symmetry: Groups

Other examples of categories are group-like categories called groupoids where
we develop the notion of inverse processes or symmetric relations.

Definition 5. A morphism f : A → B is invertible if there is a two-sided
inverse f−1 : B → A such that both

f−1 ◦ f = 1B f ◦ f−1 = 1A

Commentary: This embodies the structure of the idea that we can undo cer-
tain processes exactly, as if nothing happened. That is, there is a symmetrical
relationship between a process and its inverse.

Definition 6. Two objects are isomorphic if there is an invertible morphism
between them.

Commentary: We can freely and losslessly translate back and forth between two
isomorphic objects

Definition 7. A groupoid is a category where every morphism is invertible.

5 We could exhibit the categorical structure for this, but will choose not to in this
treatment.



We will first consider groupoids that have only a single object, mathemati-
cally these are referred to as groups.

Note 2. On notation: Groups are well studied mathematical objects and many of
them have their own names, such as the n element cyclic groups Zn. Thus when
we look at the categorical structure of these objects we will denote the category
corresponding to a group G as BG. BG is sometimes called the delooping of
the group G.

Example 9. The category BZ2 is an identity morphism 1• : • → • and a mor-
phism g : • → •. We can diagram it explicitly as:

•1• :: gdd

Commentary: This gives the categorical structure of the smallest non-trivial
group. Let’s take a look at what the requirement that morphisms be closed
under composition means for this category. Consider g ◦ g, which is an allowable
composition (it is “well typed”) since g has the same domain and codomain. To
keep closure either g ◦ g = g or g ◦ g = 1∗. It must be the latter, since if g ◦ g = g
then we know that g is an identity morphism on ∗ and so, by Theorem 1, g = 1∗
and the category would not be distinct from 1. Thus g ◦ g = 1∗. In this way g
is sort of half an identity, as doing it twice is equivalent to doing nothing. This
vague half-identity notion is formalized in the following notions of groups (which
for two elements are all equivalent):

symmetric group, i.e. all the permutations of two symbols
cyclic group, i.e. alternating, the oscillation from one to another and back.

Even’s and odd’s, multiplying by -1, off and on processes, clock ticks, etc.
dihedral group, i.e. the group of symmetries (reflections and rotation) of a poly-

gon with two vertices (just one side).6

all of whom’s structure is given by the two morphisms of the category BZ2.

Example 10. The category BS3 or the delooped dihedral group of degree three is
given by six morphisms 1•, a, b, x, y, z : • → •. The quiver diagram is not partic-
ularly illustrative so we won’t reproduce one. These morphisms are geometrical
processes of rotations and reflections of an equilateral triangle that leave the
triangle invariant. They are shown in Figure 1. We can describe them as follows:

1• Do nothing.
a is a 120 degree rotation.
b is a 240 degree rotation.
x is a reflection around a x axis.
y is a reflection around a y axis.
z is a reflection around a z axis.

The morphisms in BS3 obey rules of composition according to Table 1.

6 This is sort of a trivial case of the dihedral group.



Fig. 1. The symmetry operations on an equilateral triangle listed from left to right
starting with the top row: 1•, b, a, x, y, z.

1• a b x y z

1• 1• a b x y z
a a b 1• y z x
b b 1• a z x y
x x z y 1• b a
y y x z a 1• b
z z y x b a 1•

Table 1. Table of composition equivalences for BS3. Choose a morphism, find its row,
and then read off the results of its composition with the other morphisms by looking
through the row.

Commentary: This category clearly structures our geometric intuition behind
the rotation and reflection symmetries of an equilateral triangle. It is also the
category for the delooped symmetric group of order three, or all the permutations
of three different objects. These two notions have the same structure. BS3 is also
notable as the smallest group (least number of morphisms) for which the order
of composition matters, i.e. it is not always the case that f ◦ g = g ◦ f . This
is what we mean when we call it the smallest non-Abelian group. Even when
each individual process can be exactly undone (as is the case for all groupoid
morphisms) we can still have structures where the order of processes is crucial.

One way of looking at these groups is that they structure symmetries as
ways that a thing can be isomorphic to itself. Groupoids thus generalize groups
to allow us to parameterize different ways that things can be isomorphic, one
way for each object in the groupoid. In this way groupoids can be viewed as a
generalized equivalence relation.

Note 3. The idea that the structure of symmetry is that of groups (and their
actions) initial stemmed from the Erlanger program of Felix Klein and further
work by Sophus Lie where groups of automorphisms give geometric structure.
See [3] for a description. A larger class of symmetries are then characterized by
their generalization to groupoids. See [2] for summary and description of the
connection between groupoids and symmetry.



2.4 Membership or Collection: Sets

This section appears to have too many open questions for me to sort it all out
right now, but here, I think, is a bit of a circular current state of things. What
follows is certainly not accepted mathematical dogma...yet.7

If you aren’t using sets as your foundation for mathematics, than you can at
least be sure they are very close. We will define a few structures and then wave
our hands a little to nudge towards a category theoretic structure for a set.

Definition 8. A discrete category is a category with only identity morphisms.8.

Commentary: This notion of separateness, or distinctness, of objects is clearly
different than one from counting/ordering them using finite categories. All the
objects are so different that there is no relation between them at all, except their
membership in the same category.9

Definition 9. A skeletal category is a category where all isomorphic objects
are exactly equal.

Commentary: In other words, if we are operating in a skeletal category then all
morphisms between different objects have irreversible effects, i.e. they cannot
be perfectly inverted. This also means that we lose track of operations that can
be perfectly undone, such as changing coordinates or units of measurement, but
that are sometimes a good idea to keep track of.

Definition 10. A small category has objects and morphisms that can be repre-
sented as sets.

Commentary: Clearly circular. The idea here is that the set of all sets is a large
set and not a small set and so we can get rid of it by thinking only about small
sets.

Definition 11. A set is a small, discrete, skeletal category.

Commentary: The metaphors involved here are, in fact just that: involved, so I’ll
leave it for now as open space in need of technical cleaning and certainly tons
more explication. “What a set is” is certainly an open question.

Note 4. We will return to the notions that axiomatize sets and set theory later,
but we will need much more of the machinery of category theory in order to
structure what is going on. This isn’t so surprising though. At some level the
right notion of set theory is all you need to do (almost) all of mathematics! So first
we will require the definition of terminal objects, pullbacks, exponents, universal
constructions, initial objects, and elementary topoi, at least. We’ll revisit this
topic later.

7 This might be true of more that is in these notes than I thought.
8 Sometimes this is also used to describe categories that are categorically equivalent

to a category with only identity morphisms, but this idea goes beyond the scope of
this example

9 It seems like some morphisms could be constructed here, even if they like strictly
outside of the discrete category in question. Inclusion functors between the objects
of the category and the category itself?



2.5 (Classical) Logic: Proofs

Example 11. Given a deductive system of logic10, a category of proofs consists
of formulas as objects and deductions as morphisms.

Commentary: We certainly believe that deductions are associative and can be
composed, and the identity morphism is trivially present. I can’t think of a
sensible deductive system where a given formula X does not imply X. In fact
there are many useful relationships between different types of categories and
different types of logics:

Regular categories structure regular logic.
Coherent categories structure coherent logic.
Heyting categories structure intuitionistic logic.
Boolean categories structure classical logic.
Monoidal categories structure linear logic.

2.6 Categories in Mathematics

While individual sets can be a little tricky to understand categorically, we can
take the notion of a set as defined and use category theory to then study them.
In fact, sets on the whole form a category!

Example 12. The category Set has (small) sets as objects and functions as mor-
phisms.

Commentary: Set is not alone in this regard. In fact many mathematical ob-
jects can be understood as objects in categories with structure preserving maps
between them. What follows are more basic examples.

Example 13. Grp consists of different groups as objects and group homomor-
phisms as morphisms. Ab consists of Abelian groups with group homomorphisms
as morphisms.

Commentary: Not only are particular groups themselves each a category, but
groups generally form a category.

Example 14. Vect consists of vector spaces11 as objects and linear transforma-
tions as morphisms.

Commentary: Anything in linear algebra can be understood as operations in the
proper category. For example, coordinate transformations in classical physics are
morphisms. This applies equally well to other fields where vectors spaces play an
important role, such as statistical analysis, denotational semantics in linguistics,
etc.

10 This originated with Lambek
11 Vect is usually taken to have objects that are vector spaces over the real numbers,

but there are also other categories whose objects are vector spaces over other fields,
such as C-Vect.



Example 15. Top consists of topological spaces as objects and continuous maps
as morphisms.

Generally speaking, anything that mathematics has been applied to is some-
where we can find examples of categories.

It is interesting to notice the perspective that underlies this approach to or-
ganizing mathematics. We think of mathematical structures not only as their
definitions, but instead, crucially, as consisting of the structure preserving mor-
phisms between them. What is set-like about sets? That which is preserved by
functions. What is topological about topological spaces? That which is invariant
under continuous maps. This dynamical and relational quality is a fundamental
part of thinking systemically with category theory. It’s very systems theoretic:

“When Bateson says that information is the difference that makes a
difference, he is referring to that use of distinction, within any given set
of variables, which makes the further and continued transformation of
difference (e.g. reproduction) possible.” Antony Wilden in System
and Structure 222

These ideas of invariants are very, very important and are embodied in this
allegiance to structure preserving morphisms (and morphisms in general) being
a structural building block.

3 Metaphors and Meaning: Functors

The importance of structure preserving morphisms extends to categories them-
selves, and historically was one one of the main reasons they were developed.
What we’re saying is that categories themselves form a category, with particular
morphisms called functors as their structure preserving maps.

Example 16. The category Cat has categories as objects and functors as mor-
phisms.

Definition 12. A functor from a category C to D is a morphism F : C→ D
which assigns to each object C of C an object FC of D and to each morphism
f : C → C ′ in C a morphism Ff : FC → FC ′ in D such that both

1. F1C = 1FC

2. F (g ◦ f) = (Fg) ◦ (Ff), for any g ◦ f in C.

That is, functors preserve identities and composites: the structure of categories.
Figure 2 provides a diagram of the sort of thing that is going on.

Commentary: This notion allows us to equate meta-category-theory with cate-
gory theory. As an example we can clarify some of the structures used so far.

Example 17. Forgetful functors go from one category to one with less structure.
For example, there is a forgetful functor from Grp (the category of groups)
to the category Set. This functor maps each delooped group to the set of its
morphisms, “forgetting” everything about the compositional structure.



Fig. 2. The source and target categories are represented by the planes labeled C and
D. The behavior of the functor (dotted line) F : C → D is to represent the category
C in D in a way that preserves the categorical structure of C.

Commentary: Of course this isn’t a precise definition, but rather a guiding rule
of thumb.

Example 18. We used quivers in Section 2.1 to allow us to diagram categories.
We can now introduce quivers rigorously and categorically as follows. We assert
that there exists a forgetful functor from Cat to the category of quivers (and
structure preserving maps between them) which we notate as Quiv:

U : Cat→ Quiv

that takes each object of a category to a vertex in a graph and takes only the
basic morphisms of the category to directed edges in the graph. We “forget” the
morphism-ness of objects and forget compositions of morphisms.

Commentary: This is certainly a very simple construction, but it is illustrative
of the way that seemingly meta-categorical ideas themselves exhibit categorical
structure. Also, once we have a forgetful functor, we can construct another func-
tor in the opposite direction called the “free functor” that maps from each quiver
to the category it represents. The relationship between this free and forgetful
functor is that of an adjunction. Adjunctions are dual morphisms in 2-categories,
which we won’t get into, but points to the fact that the notion of free and for-
getful functors used here are in no way structurally empty notions even if they
seem simple. And they shouldn’t be simple, in this example we have used them
to come up with an intuitive and accurate diagrammatic representation of cat-
egories, which a priori isn’t such a simple task.

Example 19. Given a functional programming language L, there is a program
category CL, where the objects are the data types of L, and the morphisms



are programs written in L. We can clearly use the output of one program on
the input of another in a way that is associative, and the program that simply
returns its input is the identity program. The denotational semantics (or the
mathematical representation of the programming language) is given by functors
from CL to other mathematical categories.

Commentary: Functors provide an insight into semantics in general, as we can
see in the following example.

Example 20. Semantics are functors between categories of signifiers and cate-
gories of denotations.

Example 21. In quantum physics, particles are projective group representations
of symmetry groups. Categorically, this means that particles are functors

P : BG→ Hilb

from a delooped symmetry group category to the category of Hilbert spaces
(special kinds of vector spaces).

Commentary: Conceptually this says that particles are representations of the
symmetries of the universe in another kind of mathematical object. In much
the same way that diagrams of quivers allow us to understand given categories,
particles allow us to formulate physical symmetries in terms of the vector spaces
that we use in quantum theory.12

Definition 13. Given a category C, it’s opposite category Cop is given by
a functor that does nothing to objects and takes

(f : A→ B) 7→ (f ′ : B → A).

Example 22. In social choice theory, given alternatives structured by an object
A, we consider the category CA whose objects are subobjects of A with mor-
phisms that are injective maps. Preferences are then understood as a functor

P : CA
op → Set

Generally speaking, when we have a functor we have the ability to translate
one categorical structure into another. These are the most rigorous and powerful
metaphors. And, of course, there are metaphors of metaphors, i.e. one can also
construct functor categories, where the objects are functors and the morphisms
are called natural transformations that preserve the structure of functors. In the
case of physics, what matters for particles is the kind of vector space that their
functor maps into, not the arbitrarily chosen basis or coordinates of that space.
Basis transformations (coordinate changes) are then natural transformations on
the particles, leaving their structure unchanged.

12 Topological Quantum Field Theories are also functors, from cobordisms to vector
spaces, but there’s no reason to get fancy just because they are elegant structures.



So far we have only defined two big concepts: categories and functors. Yet
together they structure an enormous variety of, well, very generally, things. And,
importantly, we have left some insights into how they structure themselves. I’d
argue that there is a lot to be gained by the recognition of categorical structure.
It allows for the rapid and rigorously accurate translations of concepts into other
fields with other categories that could yield unexpected and creative expressions.
Even in just the examples above, we see the sense in which particles are the
semantics in one part of physics and preferences the semantics of choice, letting
us more precisely understand what we mean when we say that physics is a
language or meaning is about choice. In this way category theory is not only
organizationally elegant, but a powerful tool for any constructive art.

There is just so much more that could be said about structures for basic
categories, especially regarding universal constructions, natural transformations,
adjoints, exponents, monoidal categories, categorical products, duals, adjoints,
graphical languages for categorical reasoning, and more and more and more.
And a lot of it might be on the way; it’s somewhere between the literature and
my head.

4 Monoidal Categories

Monoidal categories add an additional structure on top of basic categories that
allows us to acknowledge two different types of composition. One way of moti-
vating monoidal categories is as a way of structuring physics.

Example 23. The category of physical process PhysProc has

physical systems as objects, with the the “do nothing” process as the identity
morphism

physical processes as morphisms (these processes often occur over some time
interval)

sequential composition of processes in time as morphism composition

Commentary: This is a general category to work in for describing physics, but
there seems to be more structure to PhysProc than that of just a basic category:
there is an idea that we can have two physical systems composed in parallel, i.e.
there is composition in space as well as in time13 This leads us to the definition
of a strict monoidal category. First we will take a look at a few other definitions
from category theory.

Definition 14. A hom-set hom(x, y) is the collection of all morphisms with
object x as domain and y as codomain.

13 This space-like and time-like severation is simply a motivating example as the struc-
ture of a monoidal category is more general than that of our physical notions of
Newtonian/Einsteinian/Godelian/etc space and time. This is good as we want to go
beyond these specific theories.



Commentary: Hom(x, y) gives all the arrows between x and y.14

Definition 15. A Monoid is a category with a single object.

Commentary: Monoids are groups where we have relaxed the requirement that
every morphisms be invertible. We still have an identity morphism and can
compose the morphisms in a monoid with results that will always be closed
within the monoid. Monoids are referred to as triples (M,⊗, I) where M is the
set of morphisms, ⊗ is the symbol for morphism composition, and I is the symbol
for the identity morphism.

Note 5. For a small category C we use the notation Ob(C) to mean the set of
objects of C.

Definition 16. A strict monoidal category C is a category for which,

1. The objects of the category have a monoid structure (Ob(C),⊗, I), i.e. for
objects A,B,C there is a monoidal composition ⊗ and unit I such that

A⊗ (B ⊗ C) = (A⊗B)⊗ C and I ⊗A = A = A⊗ I

This means we have objects not only like A and B, but also A⊗B.

2. The morphisms of C also have a monoid structure with a composition

−⊗− : hom(A,B)× hom(C,D)→ hom(A⊗ C,B ⊗D), such that

(f, g) 7→ f ⊗ g

which is associative and whose unit it the identity morphism 1I , i.e.

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h and 1I ⊗ f = f = f ⊗ 1I

3. For all morphisms whose domains and codomains properly match

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) (5)

4. For all objects A,B we have

1A ⊗ 1B = 1A⊗B

14 Hom-sets are not necessarily sets, but they are for small categories. In that case we
more formally define hom(−,−) as a covariant bifunctor (a kind of functor)

hom(−,−) : Cop ×C→ Set

This functor assigns pairs of domains and codomains (when there are morphisms
between them) to particular sets of those morphisms.



Commentary: Part of what monoidal categories structure is an idea behind con-
junction15

A⊗B := system A and system B

f ⊗ g := process f and process g

Monoidal categories are then able to structure categories that have both parallel
and sequential processes such as PhysProc.

Note 6. We have defined a strict monoidal category here for convenience, but
monoidal categories are not much different, though their definition is a bit more
involved. Non-strict monoidal categories replace the equalities in the definition
above definition with isomorphisms.16

At a basic level (strict) monoidal categories encode the structure underlying
our naive notions of Time and Space when we look at simple categories like the
following example:

Example 24. The category of cooking Cook has states of ingredients as objects
(raw potato, cooked carrot, salted potato, etc.) and cooking processes as mor-
phisms (do-nothing, boiling, frying, salting, slicing, etc.). Boiling is a morphisms
f : A→ B from raw potato to boiled potato. Salting is a morphism g : B → C
from boiled potato to delicious potato. Slicing is a morphism h : D → E from
raw carrot to sliced carrot. Frying is a morphism j : E → M from sliced carrot
to crispy carrot. We can compose cooking processes in sequence, i.e.

g ◦ f boils the raw potato then salts the boiled potato.
j ◦ h slices the raw carrot then fries the sliced carrot.

Indeed Cook has the structure of a monoidal category, since we can not only
cook sequentially, but also in parallel.

1A⊗D : A⊗D → A⊗D does nothing to a raw potato and a raw carrot.
f ⊗ h : A⊗D → B ⊗ E boils the raw potato while slicing the raw carrot.

It is also true that this category satisfies Equation (5), which in this category
says that

Boiling a potato then salting the potato while slicing a carrot then frying the
carrot.

(is equivalent to)
Boiling a potato while slicing a carrot then salting the potato while frying

the carrot.

15 This is, however, more general than classical logical conjuction which requires that
A AND A is equivalent to A, while in general A ⊗ A 6= A. The more general logic
that monoidal categories structure is referred to as linear logic.

16 In fact, they replace them with what are called natural isomorphisms, another cat-
egory theoretic idea.



Naively we may want to attribute this to sequential processes being separated in
time and parallel processes being separated in space, but this brings in physical
notions of time and space where what we really want is the structure of two dif-
ferent processes with a certain relationship without accompanying metaphysical
(or metaphorical) baggage, i.e. a monoidal category. We can then ask whether
Time and Space do have some sort of monoidal categorical structure. This is
then a question for physical experiment as our mathematics can structure what-
ever the results turn out to be. Can we define a category Time whose objects
are things with some appropriate morphisms? It seems to be the case that it is
better to think of spacetime, at least where relativity is concerned, but it is our
hope that we have at least gestured toward how categories can structure such
concepts.

5 Diagrammatic Categorical Reasoning

Categories, monoidal categories in particular have a rigorous graphical calculus,
or “picturalism”. This section won’t try to be quite as technical, but will sim-
ply introduce the main ideas. Remember that underlying this (like there was a
forgetful functor underlying the idea of quivers, but much more so) are some
powerful theorems and structures that prove its rigor.

5.1 Graphical Calculus for Categories

Even this first definition of a category comes with a native graphical calculus.
We represent an object A as an unbroken wire

A

and a morphism f : A→ B as boxes with objects (wires) as input and output

B

f

A

Note 7. We “read” these diagrams from bottom to top.



Composition is performed by attaching the next morphism box to the wire above
the first, i.e. g ◦ f is diagrammed as

C

g

B

f

A

5.2 Graphical Calculus for Monoidal Categories

It is in application to monoidal categories that the graphical calculus really
shines. By representing the monoidal operation as appending pictures horizon-
tally on the plane, the structural isomorphisms of monoidal categories become
intuitive. For example, the interchange law (g◦f)⊗(k◦h) = (g⊗k)◦(f⊗h) (as-
suming the morphisms are well typed) is immediate as both sides of the equation
are diagrammed as

If we leave in some artificial brackets, this becomes more obvious

In general we have planar diagrams where horizontal composition is the ten-
sor product and vertical composition is categorical composition. The monoidal
identity I is left as a blank space on the page.

We will now present some other category theoretic ideas that can be pre-
sented in the graphical calculus (much more elegantly than in their traditional



presentation), but we will present them quickly just to give a survey of the ways
that category theoretic structures can be presented in this picturalism.

Definition 17. The swap morphism σ : A ⊗ B → B ⊗ A is diagrammed as
follows

Commentary: It should be fairly obvious that this morphism structures our idea
of swapping two things in space, which is why it is able to be rigorously presented
as the crossing of two objects on the page.

Definition 18. In a symmetric monoidal category the following graphical
law is true

=

In symmetric monoidal categories, the swap morphism exists and σ−1 = σ.

Commentary: It does not have to be the case that swapping two items causes no
irreversible changes. What if the monoidal product has the structural of rotations
and reflections of an equilateral triangle in the plane? In that case the order that
the operations are performed in does matter, so this would not be a symmetric
monoidal category.17

Definition 19. A dagger category is a category C equipped with a dagger
functor † : C→ Cop such that for all morphisms f :

(f†)† = f

In the graphical calculus the dagger functor operation is to flip the diagram
about its horizontal axis:

B A

f 7→ f†

A B

Commentary: This functor is an example of a kind of symmetry (perhaps causal
symmetry) we could believe exists for sequential composition in a category.

17 In general I suppose there is a relationship between symmetric monoidal categories
and abelian groups that would apply here, but I’m not going to look it up or work
it out right now.



Definition 20. The dual A∗ to an object A in a symmetric monoidal category
is drawn with arrows as follows

A A∗

such that the morphisms η : I → A∗ ⊗A and ε : A⊗A∗ → I drawn as

A∗ A
η := ε :=

A A∗

satisfy the following “snake equations”:

=

and

=

Definition 21. A compact category is a symmetric monoidal category for
which every object has a dual.

Commentary: In such a category we have the freedom to move boxes along wires,
cross and uncross wires, bend wires and yank them straight. These categories
structure our intuition for flows along wires in an idea that is fundamentally
topological in nature.

Example 25. In the dagger compact category FHilb where

objects are finite dimensional Hilbert spaces
morphisms are finite linear maps
monoidal products are vector space tensor products
the unit I = C
the dagger-functor the adjunction functor
all objects are self-dual

this graphical language has been extended into one that captures quantum me-
chanical structure as it relates to the finite dimensional Hilbert spaces manipu-
lated in quantum computations. This is known as the Z/X calculus.

Commentary: What this says is that quantum mechanics has a structure of
flows along wires. This is one way to rigorously speak of what we mean by flows
of quantum information. The next section expands on how we know that it is
information that is flowing.



6 Classical Information: Monoids in Categories

One structure necessary for our understanding of classical information, is that we
can freely perform operations of copying and deleting. The structure of copying
and deleting is that of monoids in monoidal categories.

Definition 22. A monoid in a monoidal category C is a triple (A,m, u) of A
in Ob(C), a multiplication morphism m : A ⊗ A → A, and a unit u : I → A
which satisfies associativity and unitality.

Diagrammatically this means that monoids have the following morphisms:

m = u =

The requirements of associativity and unitality have the structure of the
following graphical rules:

=

and

= =

Commentary: Recall that monoids can be viewed as single object categories.
This graphical definition simply says that when we compose the morphisms of a
monoid we connect two wires (objects) to get a third in an associative way. This
structure exists due to closure of composition. Secondly, it says that we have a
unit morphism in the monoid so that whenever we combine it with anything else
this is the same as doing nothing.

Definition 23. A monoid is a commutative monoid when the following holds:

=

Commentary: This is the same as saying that the monoid is an Abelian category,
i.e. the order of composition in the monoid category does not matter as f ◦ g =
g ◦f . If we then required that all the morphisms be invertible, the monoid would
become an Abelian group.



Definition 24. A comonoid in a monoidal category C is a triple (A, d, e) of
A ∈ Ob(C), a duplication morphism d : A→ A⊗A, and a unit e : A→ I which
satisfies associativity and unitality.

Graphically comonoids are represented by diagrams like those for the monoid,
except flipped around a horizontal axis. This likewise gives the definition for a
commutative comonoid.

By combining monoids and comonoids we are able to build axioms for clas-
sical flows of information. These are called classical structures.

Definition 25. A classical structure in a dagger symmetric monoidal cate-
gory is a commutative special dagger-Frobenius algebra. This is equivalent to a
pair of a monoid and comonoid that satisfy the following three graphical laws:

= = =

Commentary: The three graphical rules above structure our understanding that

1. Copies of (classical) information are indistinguishable, so we cannot tell if
we swap them.

2. If we copy (classical) information and then compare the copies (keeping all
that is the same), then we just get back what we started with.

3. From two copies of information, copying one and then comparing the copy
(keeping all that is the same) to the third is the same as comparing the
copies (keeping all that is the same) and then copying the result.

If we have all three of these rules, then we are freely able to copy information
and delete redundant information. We note that these structures don’t exist in
every category, so ideas of computation in many categories does not come along
with the ability to freely copy and delete information.

There have not been as many examples in this section because our aim has
been to give a general flavor for what structures of category theory look like when
embedded in our intuitions for boxes and wires on a plane. It may be easier to find
and understand examples of these more complicated categorical structures once
you have developed an intuition for their graphical calculus. And indeed, you
can proceed confident that your intuitions for the graphical calculus are unlikely
to lead you astray (at least in regard to certain categories like Stab for stabilizer
quantum mechanics) where the graphical calculus has been shown to completely
capture the structure of the theory. There is still much to be done in formalizing
the rigor of the graphical calculus in more particular areas, but it will always
be a helpful presentational tool. The innateness of these visual/diagrammatic
presentations along with the ubiquity of categorical structure allows for the



more or less rigorous visual presentation of structural connections between fields
wherever they come up. This is the sort of thinking that has led to categorical
diagrams of linguistic meaning, and could easily lead to the - again more or
less rigorous - visual exploration of processes all over the place. What is the
proper category for the dialectic turns in Hegel’s Phenomenology of Spirit? Can
we diagram their structure? What about the eschatological flavor in Marx’s
politics? How about the structure of social and anthropological relations? The
narrative structure in the film Memento? Neural networks? Bayesian reasoning?

Further, we can turn things on their head and speak of the general structures
of diagrams using category theory: flow charts, Feynman diagrams, spin foams
in loop quantum gravity, electrical circuit diagrams, finite state automata, and,
as always, more and more and more and more.
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7 Further Developments

Some future notes about further developing this piece.

1. Lanham advises that a book by Gadamer could provide reference to differ-
ences in Category Theoretic structure between Kant and Hegel.

2. Another ripe example for continental categorification is deMan’s writing on
different conceptions of Time in poetry: metaphoric time, etc.

3. Consider introducing the diagrammatic language earlier.
4. Expand a whole section on duality theory.


