
Architectures for
Hybrid Quantum/Classical Computing

Will Zeng

ORNL 2017 05.25.2017

Outline
> Near-term quantum computers & What they can and can’t do

> An architectural outline for hybrid classical/quantum computing

> The Quantum Instruction Language (Quil) for hybrid computing

> Intro to Higher-level programming with pyQuil

> A worked example: QAOA for MAXCUT compiling from pyQuil down to the metal

> Example open problems for collaboration:

> Routing, generic unitary compilation, high-performance noisy simulation, and classical integration

Tens to low hundreds of physical qubits

> Nearest-neighbor lattices: superconducting qubits
> Finite fidelities
> Measurable cross-talk
> Typically capable of approximately parameterized gates
> Fast-feedback limitations
> Limited Error-correction

IBM Rigetti Google

Near-term Quantum Computers

IonQ / UMD

What we can’t do near-term

> Shor’s algorithm (of order 108 qubits c.f. Fowler et al. 1208.0928)

> Anything with a qRAM

> Grover’s search

> Exact Hamiltonian Simulation

> Fault-tolerant quantum computation

What we can do: hybrid pre-threshold algorithms
> Variational Quantum Eigensolver > Quantum Approximate Optimization Algorithm

What we can do: hybrid pre-threshold algorithms
> Variational Quantum Eigensolver > Quantum Approximate Optimization Algorithm

Peruzzo et al. 1304.3061 O’Malley et al. 1512.06860

Kandala et al.
1704.05018

Variational Quantum Eigensolver
1. MOLECULAR DESCRIPTION 2. MAP TO QUBIT REPRESENTATION

e.g. Bravyi-Kitaev or Jordan-Wigner Transform

3. PARAMETERIZED ANSATZ

e.g. Unitary Coupled Cluster
 Variational Adiabatic Ansatz

Wecker, D., et al. (2015). Progress towards practical quantum variational algorithms. Physical Review A, 92(4), 042303.
O'Malley, P. J. J., et al. (2015). Scalable Quantum Simulation of Molecular Energies. arXiv:1512.06860. McClean, J. R. et al. (2015). The theory of variational hybrid quantum-classical algorithms. arXiv:1509.04279.

Peruzzo, A., et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5.

e.g. DI-HYDROGEN

e.g. Electronic Structure Hamiltonian

PREPARE
QUANTUM
STATE (Ḯ)

MEASURE TERM 2

MEASURE TERM N

MEASURE TERM 1

…

QUANTUM PROCESSOR CLASSICAL PROCESSOR

SUM
TERMS

CLASSICAL
OPTIMIZATION OF

ANSATZ
PARAMETER:

Ḯ

4. RUN Q.V.E. QUANTUM-CLASSICAL HYBRID ALGORITHM

Variational Quantum Eigensolver

Kandala et al. 1704.05018

Challenge in near-term quantum algorithms

Catalysts Complex Materials 5

N2-activation, H2O-O2, etc High-TC, dichalcogenides, etc

Score +1

Score 0

Max-Cut cost operator

MAX-CUT

Quantum Simulation
Variational Quantum Eigensolvers 1,2,3,4

Quantum Optimization
QAOA 6,7

QCVV & QEC
Topological Codes, GST, RB, CSS Codes, etc. 8, 9, 10, 11,

12

Up to low hundreds of noisy physical qubits

[1] Peruzzo et al. “A variational quantum eigensolver on a photonic quantum processor.” Nature Communications, vol. 5, 2014
[2] O’Malley et al. “Scalable quantum simulation of molecular energies.” Phys. Rev. X, vol. 6, p. 031007, July 2016
[3] McClean et al. “The theory of variational hybrid quantum-classical algorithms.” New Journal of Physics, vol. 18, p. 023023, 2016.
[4] N. C. Rubin. “A hybrid classical/quantum approach for large-scale studies of quantum systems with density matrix embedding theory.” arXiv:1610.06910, 2016
[5] Bauer et al. “Hybrid quantum-classical approach to correlated materials.” Phys. Rev. X, vol. 6, p. 031045, Sep 2016.
[6] Farhi et al. “A quantum approximate optimization algorithm.” arXiv:1411.4028
[7] Farhi et al. “A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem.” arXiv:1412.6062
[8] Chow et al. “Characterizing a four-qubit planar lattice for arbitrary error detection.” in SPIE Sensing Technology+Applications. International Society for Optics and
Photonics, 2015.
[9] Kelly et al. “State preservation by repetitive error detection in a superconducting quantum circuit.” Nature, vol. 519, no. 7541, pp. 66-69, 2015.
[10] Gottesman. “Quantum fault tolerant in small experiments.” arXiv:1610.03507
[11] Nickerson. “Error correcting power of small topological codes.” arXiv:1609.01753
[12] Erik, LSaldyt, Jonathan Gross, Travis Scholten, kmrudin, tjproct, & David Nadlinger. (2017). pyGSTio/pyGSTi: Version 0.9.3 [Data set]. Zenodo.
http://doi.org/10.5281/zenodo.269609
...and more!

What are the gate
counts / resource reqs?

How do they behave
under noise?

How do we optimize
them?

Challenge in near-term quantum algorithms

Catalysts Complex Materials 5

N2-activation, H2O-O2, etc High-TC, dichalcogenides, etc

Score +1

Score 0

Max-Cut cost operator

MAX-CUT

Quantum Simulation
Variational Quantum Eigensolvers 1,2,3,4

Quantum Optimization
QAOA 6,7

QCVV & QEC
Topological Codes, GST, RB, CSS Codes, etc. 8, 9, 10, 11,

12

Up to low hundreds of noisy physical qubits

[1] Peruzzo et al. “A variational quantum eigensolver on a photonic quantum processor.” Nature Communications, vol. 5, 2014
[2] O’Malley et al. “Scalable quantum simulation of molecular energies.” Phys. Rev. X, vol. 6, p. 031007, July 2016
[3] McClean et al. “The theory of variational hybrid quantum-classical algorithms.” New Journal of Physics, vol. 18, p. 023023, 2016.
[4] N. C. Rubin. “A hybrid classical/quantum approach for large-scale studies of quantum systems with density matrix embedding theory.” arXiv:1610.06910, 2016
[5] Bauer et al. “Hybrid quantum-classical approach to correlated materials.” Phys. Rev. X, vol. 6, p. 031045, Sep 2016.
[6] Farhi et al. “A quantum approximate optimization algorithm.” arXiv:1411.4028
[7] Farhi et al. “A quantum approximate optimization algorithm applied to a bounded occurrence constraint problem.” arXiv:1412.6062
[8] Chow et al. “Characterizing a four-qubit planar lattice for arbitrary error detection.” in SPIE Sensing Technology+Applications. International Society for Optics and
Photonics, 2015.
[9] Kelly et al. “State preservation by repetitive error detection in a superconducting quantum circuit.” Nature, vol. 519, no. 7541, pp. 66-69, 2015.
[10] Gottesman. “Quantum fault tolerant in small experiments.” arXiv:1610.03507
[11] Nickerson. “Error correcting power of small topological codes.” arXiv:1609.01753
[12] Erik, LSaldyt, Jonathan Gross, Travis Scholten, kmrudin, tjproct, & David Nadlinger. (2017). pyGSTio/pyGSTi: Version 0.9.3 [Data set]. Zenodo.
http://doi.org/10.5281/zenodo.269609
...and more!

What are the gate
counts / resource reqs?

How do they behave
under noise?

How do we optimize
them?

How do we program near-term systems for
near-term algorithms?

FOREST: A stack for classical/quantum hybrid programming

QUANTUM INSTRUCTION LANGUAGE:
Quil

QUANTUM VIRTUAL MACHINE /
QUANTUM COMPUTER

Scheduling

DEVELOPMENT: pyQuil

APPLICATIONS: Grove

Client

Server

> Write applications...

> using tools...

> that build quantum
 programs...

> that compile onto
 quantum hardware...

> that execute on a
 real or virtual
 quantum processor.

forest.rigetti.com

 Open-sourced on github
under Apache v2.0 license

github.com/rigetticomputing/pyquil

github.com/rigetticomputing/grove

Open for private-beta signups

forest.rigetti.com

Unitary Compilation

Allocation & Routing

Quil and the Quantum Abstract Machine
A hybrid classical/quantum programming model.

Quil is portable.

Quil is portable, foundational.

Quil is portable, foundational, hybrid.

Quil is portable, foundational, hybrid.

Fast Reset

X

Repeat-until-success Quantum Error Correction

Riste & DiCarlo. Digital Feedback in
Superconducting Quantum Circuits.
1508.01385

Wiebe & Roettler. Quantum arithmetic and numerical analysis
using Repeat-Until-Success circuits. 1406.2040

Bocharev et al. Efficient Synthesis of Universal
Repeat-Until-Success Circuits. 1404.5320

Fowler et al. Surface codes: Towards practical
large-scale quantum computation. 1208.0928

The Quil Programming Model
Targets a Quantum Abstract Machine (QAM)

> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on
qubit 3

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

Ψ2, C0, κ2

Ψ3, C1, κ2

1. Hadamard on
qubit 3

2. Measure qubit 3
into bit #4

Outcome 0

Outcome 1

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

Ψ2, C0, κ2

Ψ3, C1, κ2

...

...

Ψ2, C0, κ3

...

1. Hadamard on
qubit 3

3. Jump to end of program
if bit #5 is TRUE

2. Measure qubit 3
into bit #4

Outcome 0

Outcome 1

Targets a Quantum Abstract Machine (QAM)
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.

Interacting with a Classical Computer
> The Quantum Abstract Machine has a shared classical state.
> The QAM becomes a practical device with this shared state.
> Classical computers can take over with classical/quantum synchronization.

Quantum Processor

H 0
CNOT 0 1
MEASURE 0 [7]
MEASURE 1 [3]
WAIT

C: Classical
Shared Memory
(bits)

Classical Processor

if C[3] + C[7] == 2:
 theta = 3*pi/7

...

continue_from_wait()
...

0 0 0 0 0 0 0 0 0 0 0 0 0 01 1

Formal Details: The Quil White Paper
For more Quil information see our updated white paper arXiv:1608.03355

https://arxiv.org/abs/1608.03355

Quantum Teleportation in Quil

DEFCIRCUIT TELEPORT A q B:
Bell pair
H A
CNOT A B

Teleport
CNOT q A
H q
MEASURE q [0]
MEASURE A [1]

Classically communicate measurements
JUMP-UNLESS @SKIP [1]
X B
LABEL @SKIP
JUMP-UNLESS @END [0]
Z B
LABEL @END

If Alice’s qubits are 0 and 1
and Bob’s is 5
TELEPORT 0 1 5

Alice’s ancilla q

Alice A

Bob B

[0]

[1]

Higher level programming with pyQuil
A Python library for hybrid programming

MAXCUT on a near-term
quantum computer

Compiling the QAOA hybrid algorithm down to the metal

FOREST: Tools for experimental quantum programming

QUANTUM INSTRUCTION LANGUAGE:
Quil

QUANTUM VIRTUAL MACHINE /
QUANTUM COMPUTER

COMPILER

DEVELOPMENT: pyQuil

APPLICATIONS: Grove

Client

Server

> Write applications...

> using tools...

> that build quantum
 programs...

> that compile onto
 quantum hardware...

> that execute on a
 real or virtual
 quantum processor.

http://grove-docs.readthedocs.io/en/latest/qaoa.html

 Open-sourced on github
under Apache v2.0 license

github.com/rigetticomputing/pyquil

github.com/rigetticomputing/grove

Simulator in private-beta
Quantum HW

forest.rigetti.com

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> A Hybrid-Quantum Classical Algorithm: Farhi et al. 2014 [1411.4028]
- Quantum co-processor algorithm (like VQE)
- Noise tolerant

> Can demonstrate quantum supremacy: Farhi & Harrow 2016 [1602.07674]

> Similar to Digitized Quantum Annealing: Barends et al. 2015 [1511.03316]

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

Constraint Satisfaction Problems: MAXIMIZE

> A Hybrid-Quantum Classical Algorithm: Farhi et al. 2014 [1411.4028]
- Quantum co-processor algorithm (like VQE)
- Noise tolerant

> Can demonstrate quantum supremacy: Farhi & Harrow 2016 [1602.07674]

> Similar to Digitized Quantum Annealing: Barends et al. 2015 [1511.03316]

THE PROBLEM

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> Constraint Satisfaction Problems: MAXIMIZE

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> Constraint Satisfaction Problems: MAXIMIZE

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> Constraint Satisfaction Problems: MAXIMIZE

. . .

. . .
H

H

H

H

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> Constraint Satisfaction Problems: MAXIMIZE

. . .

. . .
H

H

H

H

MAXIMIZE

The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> Constraint Satisfaction Problems: MAXIMIZE

. . .

. . .

MAXIMIZE

Running QAOA

Determine direction
for minimization

Update Beta,
Gamma

CPU

Noisy Probability Density
Minimization

Optimization param

O
bjective Function

Pr
ob

ab
ili

ty

Running QAOA

Determine direction
for minimization

Update Beta,
Gamma

CPU

Noisy Probability Density
Minimization

Optimization param

O
bjective Function

Pr
ob

ab
ili

ty

Alternative Approach:
analytically calculate optimal coefficients and run
once.
WIP by Rieffel & NASA QuAIL

QAOA for MAX-CUT

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph

QAOA for MAX-CUT

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph

import itertools

from pyquil.quil import Program
from pyquil.paulis import sZ, sX, sI, exponential_map
from pyquil.compiler import rpqc

graph = [(0, 1), (1, 2), (2, 3), (3, 4)]
nodes = {node for edge in graph for node in edge}

cost_ham = sum(0.5 * sZ(i) * sZ(j) - 0.5*sI(0) for i, j in graph)
driver_ham = sum(-1. * sX(i) for i in nodes)

QAOA for MAX-CUT

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph

import itertools

from pyquil.quil import Program
from pyquil.paulis import sZ, sX, sI, exponential_map
from pyquil.compiler import rpqc

graph = [(0, 1), (1, 2), (2, 3), (3, 4)]
nodes = {node for edge in graph for node in edge}

cost_ham = sum(0.5 * sZ(i) * sZ(j) - 0.5*sI(0) for i, j in graph)
driver_ham = sum(-1. * sX(i) for i in nodes)

def cost_step(gamma):
 return merge_program([exponential_map(term)(gamma) for term in cost_ham])

def driver_step(beta):
 return merge_program([exponential_map(term)(beta) for term in driver_ham])

QAOA for MAX-CUT

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph

import itertools

from pyquil.quil import Program
from pyquil.paulis import sZ, sX, sI, exponential_map
from pyquil.compiler import rpqc

graph = [(0, 1), (1, 2), (2, 3), (3, 4)]
nodes = {node for edge in graph for node in edge}

cost_ham = sum(0.5 * sZ(i) * sZ(j) - 0.5*sI(0) for i, j in graph)
driver_ham = sum(-1. * sX(i) for i in nodes)

def cost_step(gamma):
 return merge_program([exponential_map(term)(gamma) for term in cost_ham])

def driver_step(beta):
 return merge_program([exponential_map(term)(beta) for term in driver_ham])

def qaoa_circuit_maker(gammas, betas):
 cost_steps = map(cost_step, gammas)
 driver_steps = map(driver_step, betas)

 interleaved_steps = zip(cost_steps, driver_steps)
 qaoa_circuit = merge_program([step for step_pair in interleaved_steps
 for step in step_pair])
 return rpqc(qaoa_circuit)

gammas = [2.0, 1.0]
betas = [0.0, 3.0]

qaoa_circuit_maker(gammas, betas)

then execute the circuit and optimize over gammas and betas

Compilation

QUANTUM INSTRUCTION LANGUAGE:
Quil

QUANTUM VIRTUAL MACHINE /
QUANTUM COMPUTER

Scheduling

DEVELOPMENT: pyQuil

Unitary Compilation

Allocation & Routing

> Quil qubit labels to physical qubits
> Routing to deal with two-qubit gates
> Optimization over noise and errors

> Compilation into the natural gate set
> Rotation Decomposition

> Scheduling into microcode

Why do we need to schedule?

● Quil has no notion of time or synchronization.
● But time and synchronization are very important.
● What are our options?

Include ad hoc
synchronization instructions

Extend Quil to “know” about time.

Give up;
Admit the physicists are better

“Program” with buttons and wires.

Compile Quil into some
temporal representation

Add machine-specific directives.

Pros:
● Directly addresses the issue
● Still an abstract framework

Cons:
● Extremely complicated!
● Difficult to reason about
● Not easily extensible
● Hard to implement
● Loses the “essence”

Pros:
● Maximal control

Cons:
● Difficult to reason about
● Nixes the idea of an

abstraction
● Difficult to automate
● Have to think about hardware

Pros:
● Remains abstract
● Adds control as necessary
● Extensible!
● Keeps Quil “clean”

Cons:
● Compilation is more difficult
● Performance characterization

is machine-specific

Events
(target, name, start_time, duration, param_dict)

RZ(1.25) 0
X-HALF 0
CPHASE 0 1
MEASURE 0 [0]

{“events”:[
(0, “+X/2”, 0.0, 40.e-9, {“z_shift”:1.25}),
(1, “+F”, 50.0.e-9, 250.e-9, {}),
(0, “READOUT”, 310.0e.-9, 1.e-6, {})

]}

Compilation to
Schedule

QPU Microcode is given by supported event types, e.g.

(target, “X-HALF”, start_time, 40.e-9, {“z_shift”:theta})
(target, “+F”, start_time, 250.e-9, {})
(target, “-F”, start_time, 250.e-9, {})

(target, “READOUT”, start_time, 1.e-6, {})

Schedules
A set of events (and some transformations on them)

Open Problems:

Allocation & Routing

Optimal implementation
includes optimization over:

> Gate sets that vary
across the chip
> Noise in gates
> Noise in qubits
> Noise in measurements
> Crosstalk

ScaffCC [1507.01902]

Generic Unitary
Decomposition

Single-qubit case is well
understood O(log(1/e))
[Kliuchnikov et al.
1510.03888]

Martinez et al. Compiling
quantum algorithms for
architectures with
multi-qubit gates.
1601.06819

Maslov. Basic circuit
compilation techniques for
an ion-trap quantum
machine. 1603.07678

High performance
simulation

qHIPSTER. Smelyanski et
al. 1601.07195.

High Performance
Emulation of Quantum
Circuits. Haener et al.
1604.06460

0.5 Petabyte Simulation of
a 45-Qubit Quantum
Circuit. Haener & Steiger.
1704.01127.

Integration with
Classical HPC

Post-processing to reduce
impact of sampling error in
VQE & QAOA

Computationally intensive
decoders in QEC

Integrations of quantum
co-processors in larger
workflows, e.g. DMET w/
VQE. Rubin 1610.06910

Acknowledgements

Robert Smith Nick Rubin

Rigetti Quantum Programming Team

Our hardware & control software colleagues, esp.
Spike Curtis, Matt Reagor and Rodney Sinclair

