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Outline
> Near-term quantum computers & What they can and can’t do

> An architectural outline for hybrid classical/quantum computing

> The Quantum Instruction Language (Quil) for hybrid computing

> Intro to Higher-level programming with pyQuil

> A worked example: QAOA for MAXCUT compiling from pyQuil down to the metal

> Example open problems for collaboration:

> Routing, generic unitary compilation, high-performance noisy simulation, and classical integration



Tens to low hundreds of physical qubits

> Nearest-neighbor lattices: superconducting qubits
> Finite fidelities
> Measurable cross-talk
> Typically capable of approximately parameterized gates
> Fast-feedback limitations
> Limited Error-correction

IBM Rigetti Google

Near-term Quantum Computers

IonQ / UMD



What we can’t do near-term

> Shor’s algorithm (of order 108 qubits c.f. Fowler et al. 1208.0928)

> Anything with a qRAM

> Grover’s search

> Exact Hamiltonian Simulation

> Fault-tolerant quantum computation



What we can do: hybrid pre-threshold algorithms
> Variational Quantum Eigensolver > Quantum Approximate Optimization Algorithm
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Peruzzo et al. 1304.3061 O’Malley et al. 1512.06860

Kandala et al. 
1704.05018



Variational Quantum Eigensolver
1. MOLECULAR DESCRIPTION 2. MAP TO QUBIT REPRESENTATION

e.g. Bravyi-Kitaev or Jordan-Wigner Transform

3. PARAMETERIZED ANSATZ

e.g. Unitary Coupled Cluster
       Variational Adiabatic Ansatz

Wecker, D., et al. (2015). Progress towards practical quantum variational algorithms. Physical Review A, 92(4), 042303.
O'Malley, P. J. J., et al. (2015). Scalable Quantum Simulation of Molecular Energies. arXiv:1512.06860. McClean, J. R. et al. (2015). The theory of variational hybrid quantum-classical algorithms. arXiv:1509.04279.

Peruzzo, A., et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5.
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Variational Quantum Eigensolver

Kandala et al. 1704.05018



Challenge in near-term quantum algorithms

Catalysts Complex Materials 5

N2-activation, H2O-O2, etc High-TC, dichalcogenides, etc

Score +1

Score 0

Max-Cut cost operator

MAX-CUT

Quantum Simulation
Variational Quantum Eigensolvers 1,2,3,4

Quantum Optimization
QAOA 6,7

QCVV & QEC
Topological Codes, GST, RB, CSS Codes, etc. 8, 9, 10, 11, 

12

Up to low hundreds of noisy physical qubits
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http://doi.org/10.5281/zenodo.269609
...and more!

What are the gate 
counts / resource reqs?

How do they behave 
under noise?

How do we optimize 
them?
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How do we program near-term systems for 
near-term algorithms?



FOREST: A stack for classical/quantum hybrid programming

QUANTUM INSTRUCTION LANGUAGE: 
Quil

QUANTUM VIRTUAL MACHINE / 
QUANTUM COMPUTER

Scheduling

DEVELOPMENT: pyQuil

APPLICATIONS: Grove

Client

Server

> Write applications...

> using tools...

> that build quantum 
   programs...

> that compile onto 
   quantum hardware...

> that execute on a 
   real or virtual 
   quantum processor.

forest.rigetti.com 

 Open-sourced on github 
under Apache v2.0 license

github.com/rigetticomputing/pyquil

github.com/rigetticomputing/grove

Open for private-beta signups

forest.rigetti.com

Unitary Compilation

Allocation & Routing



Quil and the Quantum Abstract Machine
A hybrid classical/quantum programming model.



Quil is portable.



Quil is portable, foundational.



Quil is portable, foundational, hybrid.



Quil is portable, foundational, hybrid.

Fast Reset

X

Repeat-until-success Quantum Error Correction

Riste & DiCarlo. Digital Feedback in 
Superconducting Quantum Circuits. 
1508.01385

Wiebe & Roettler. Quantum arithmetic and numerical analysis 
using Repeat-Until-Success circuits. 1406.2040

Bocharev et al. Efficient Synthesis of Universal 
Repeat-Until-Success Circuits. 1404.5320

Fowler et al. Surface codes: Towards practical 
large-scale quantum computation. 1208.0928



The Quil Programming Model
Targets a Quantum Abstract Machine (QAM) 

> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.



The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

Targets a Quantum Abstract Machine (QAM) 
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

# Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.
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The Quil Programming Model

Ψ: Quantum state (qubits) → quantum instructions
C: Classical state (bits) → classical and measurement instructions
κ: Execution state (program)→ control instructions (e.g., jumps)

QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

Ψ2, C0, κ2

Ψ3, C1, κ2

...

...

Ψ2, C0, κ3

...

1. Hadamard on 
qubit 3

3. Jump to end of program 
if bit #5 is TRUE

2. Measure qubit 3 
into bit #4 

Outcome 0

Outcome 1

Targets a Quantum Abstract Machine (QAM) 
> Quil is the instruction language and is how you interact with the machine
> It is a syntax for representing state transitions.

0. Initialize into zero states

# Quil Example
H 3
MEASURE 3 [4]
JUMP-WHEN @END [5]
.
.
.



Interacting with a Classical Computer
> The Quantum Abstract Machine has a shared classical state.
> The QAM becomes a practical device with this shared state.
> Classical computers can take over with classical/quantum synchronization.

Quantum Processor

H 0
CNOT 0 1
MEASURE 0 [7]
MEASURE 1 [3]
WAIT

C: Classical 
Shared Memory 
(bits)

Classical Processor

if C[3] + C[7] == 2:
    theta = 3*pi/7

...

continue_from_wait()
...

0 0 0 0 0 0 0 0 0 0 0 0 0 01 1



Formal Details: The Quil White Paper
For more Quil information see our updated white paper arXiv:1608.03355 
 

https://arxiv.org/abs/1608.03355


Quantum Teleportation in Quil

DEFCIRCUIT TELEPORT A q B:
# Bell pair
H        A
CNOT     A B

# Teleport
CNOT     q A
H        q
MEASURE  q [0]
MEASURE  A [1]

# Classically communicate measurements
JUMP-UNLESS @SKIP [1]
X B
LABEL @SKIP
JUMP-UNLESS @END [0]
Z B
LABEL @END

# If Alice’s qubits are 0 and 1
# and Bob’s is 5
TELEPORT 0 1 5

Alice’s ancilla q

Alice A

Bob B

[0]

[1]



Higher level programming with pyQuil
A Python library for hybrid programming



MAXCUT on a near-term 
quantum computer

Compiling the QAOA hybrid algorithm down to the metal



FOREST: Tools for experimental quantum programming

QUANTUM INSTRUCTION LANGUAGE: 
Quil

QUANTUM VIRTUAL MACHINE / 
QUANTUM COMPUTER

COMPILER

DEVELOPMENT: pyQuil

APPLICATIONS: Grove

Client

Server

> Write applications...

> using tools...

> that build quantum 
   programs...

> that compile onto 
   quantum hardware...

> that execute on a 
   real or virtual 
   quantum processor.

http://grove-docs.readthedocs.io/en/latest/qaoa.html

 Open-sourced on github 
under Apache v2.0 license

github.com/rigetticomputing/pyquil

github.com/rigetticomputing/grove

Simulator in private-beta
Quantum HW

forest.rigetti.com



The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> A Hybrid-Quantum Classical Algorithm:  Farhi et al. 2014 [1411.4028]
- Quantum co-processor algorithm (like VQE)
- Noise tolerant

> Can demonstrate quantum supremacy:  Farhi & Harrow 2016 [1602.07674]

> Similar to Digitized Quantum Annealing: Barends et al. 2015 [1511.03316]



The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

Constraint Satisfaction Problems: MAXIMIZE

> A Hybrid-Quantum Classical Algorithm:  Farhi et al. 2014 [1411.4028]
- Quantum co-processor algorithm (like VQE)
- Noise tolerant

> Can demonstrate quantum supremacy:  Farhi & Harrow 2016 [1602.07674]

> Similar to Digitized Quantum Annealing: Barends et al. 2015 [1511.03316]

THE PROBLEM
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The Quantum Approximate Optimization Algorithm
 QAOA: kwaah-waah

> Constraint Satisfaction Problems: MAXIMIZE

. . .

. . .

MAXIMIZE



Running QAOA

Determine direction 
for minimization

Update Beta, 
Gamma

CPU

Noisy Probability Density 
Minimization

Optimization param

O
bjective Function

Pr
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Running QAOA

Determine direction 
for minimization

Update Beta, 
Gamma

CPU

Noisy Probability Density 
Minimization

Optimization param

O
bjective Function

Pr
ob

ab
ili

ty

Alternative Approach: 
analytically calculate optimal coefficients and run 
once.
WIP by Rieffel & NASA QuAIL



QAOA for MAX-CUT 

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph



QAOA for MAX-CUT 

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph

import itertools

from pyquil.quil import Program
from pyquil.paulis import sZ, sX, sI, exponential_map
from pyquil.compiler import rpqc

graph = [(0, 1), (1, 2), (2, 3), (3, 4)]
nodes = {node for edge in graph for node in edge}

cost_ham = sum(0.5 * sZ(i) * sZ(j) - 0.5*sI(0) for i, j in graph)
driver_ham = sum(-1. * sX(i) for i in nodes)
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> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph
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driver_ham = sum(-1. * sX(i) for i in nodes)

def cost_step(gamma):
   return merge_program([exponential_map(term)(gamma) for term in cost_ham])

def driver_step(beta):
  return merge_program([exponential_map(term)(beta) for term in driver_ham])



QAOA for MAX-CUT 

Score+1

Score 0

> Ring Example:

> Hamiltonian Cost Function:

Score = +4Score = 0

> Define constraints with an arbitrary graph

import itertools

from pyquil.quil import Program
from pyquil.paulis import sZ, sX, sI, exponential_map
from pyquil.compiler import rpqc

graph = [(0, 1), (1, 2), (2, 3), (3, 4)]
nodes = {node for edge in graph for node in edge}

cost_ham = sum(0.5 * sZ(i) * sZ(j) - 0.5*sI(0) for i, j in graph)
driver_ham = sum(-1. * sX(i) for i in nodes)

def cost_step(gamma):
   return merge_program([exponential_map(term)(gamma) for term in cost_ham])

def driver_step(beta):
  return merge_program([exponential_map(term)(beta) for term in driver_ham])

def qaoa_circuit_maker(gammas, betas):
    cost_steps = map(cost_step, gammas)
    driver_steps = map(driver_step, betas)

    interleaved_steps = zip(cost_steps, driver_steps)
    qaoa_circuit = merge_program([step for step_pair in interleaved_steps
                                      for step in step_pair])
    return rpqc(qaoa_circuit)

gammas = [2.0, 1.0]
betas = [0.0, 3.0]

qaoa_circuit_maker(gammas, betas)

# then execute the circuit and optimize over gammas and betas



Compilation

QUANTUM INSTRUCTION LANGUAGE: 
Quil

QUANTUM VIRTUAL MACHINE / 
QUANTUM COMPUTER

Scheduling

DEVELOPMENT: pyQuil

Unitary Compilation

Allocation & Routing

> Quil qubit labels to physical qubits
> Routing to deal with two-qubit gates
> Optimization over noise and errors

> Compilation into the natural gate set
> Rotation Decomposition

> Scheduling into microcode



Why do we need to schedule?

● Quil has no notion of time or synchronization.
● But time and synchronization are very important.
● What are our options?

Include ad hoc
synchronization instructions

Extend Quil to “know” about time.

Give up;
Admit the physicists are better

“Program” with buttons and wires.

Compile Quil into some
temporal representation

Add machine-specific directives.

Pros:
● Directly addresses the issue
● Still an abstract framework

Cons:
● Extremely complicated!
● Difficult to reason about
● Not easily extensible
● Hard to implement
● Loses the “essence”

Pros:
● Maximal control

Cons:
● Difficult to reason about
● Nixes the idea of an 

abstraction
● Difficult to automate
● Have to think about hardware

Pros:
● Remains abstract
● Adds control as necessary
● Extensible!
● Keeps Quil “clean”

Cons:
● Compilation is more difficult
● Performance characterization 

is machine-specific



Events
(target, name, start_time, duration, param_dict)

RZ(1.25) 0
X-HALF 0
CPHASE 0 1
MEASURE 0 [0]

{“events”:[
(0, “+X/2”, 0.0, 40.e-9, {“z_shift”:1.25}),
(1, “+F”, 50.0.e-9, 250.e-9, {}),
(0, “READOUT”, 310.0e.-9, 1.e-6, {})

]}

Compilation to 
Schedule

QPU Microcode is given by supported event types, e.g.

(target, “X-HALF”, start_time, 40.e-9, {“z_shift”:theta})
(target, “+F”, start_time, 250.e-9, {})
(target, “-F”, start_time, 250.e-9, {})

(target, “READOUT”, start_time, 1.e-6, {})

Schedules
A set of events (and some transformations on them)



Open Problems:

Allocation & Routing

Optimal implementation 
includes optimization over:

> Gate sets that vary 
across the chip
> Noise in gates
> Noise in qubits
> Noise in measurements
> Crosstalk

ScaffCC [1507.01902]

Generic Unitary 
Decomposition

Single-qubit case is well 
understood O(log(1/e)) 
[Kliuchnikov et al. 
1510.03888] 

Martinez et al. Compiling 
quantum algorithms for 
architectures with 
multi-qubit gates. 
1601.06819

Maslov. Basic circuit 
compilation techniques for 
an ion-trap quantum 
machine. 1603.07678

High performance 
simulation

qHIPSTER. Smelyanski et 
al. 1601.07195.

High Performance 
Emulation of Quantum 
Circuits. Haener et al. 
1604.06460

0.5 Petabyte Simulation of 
a 45-Qubit Quantum 
Circuit. Haener & Steiger. 
1704.01127.

Integration with 
Classical HPC

Post-processing to reduce 
impact of sampling error in 
VQE & QAOA

Computationally intensive 
decoders in QEC

Integrations of quantum 
co-processors in larger 
workflows, e.g. DMET w/ 
VQE. Rubin 1610.06910
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