
Quantum Programming on
near-term devices

MURI Review Invited Talk 11.29.2016
Will Zeng

1994

TODAY

Here’s where
we are 1992-4

First Quantum Algorithms w/ Exponential Speedup (Deutsch-Jozsa,
Shor’s Factoring, Discrete Log, ...)

2001
First Superconducting Qubits

1996
First Quantum Database Search Algorithm (Grover’s)

2007
Transmon Invented

2008

2007
Quantum Linear Equation Solving (Harrow, Hassidim, Lloyd)

High Threshold Error Correcting Codes Emerge
Quantum Algorithms for SVM’s & Principal Component Analysis2012

Qubit coherence passes error-correcting
threshold (Yale & IBM (CTR))

Nobel prize for quantum control of atoms
& ions

2013

2016

Low Overhead Error Correcting Codes
Practical Quantum Chemistry Algorithms (QVE)

Low Overhead Error Correcting Codes
Practical Quantum Optimization Algorithms (QAOA)

2015
First QEC Experiments on multi-qubit chips

Scalable quantum chemistry simulations
on multi-qubit chips

1996
First Quantum Error Correction Codes

(3) Invention of Quantum/Classical Hybrid Algorithms

(1) Invention of Quantum Algorithms

(2) Performant
superconducting
circuits: 1-9 qubits

> Scalable chip-based quantum processors
Superconducting Microwave Circuits

> Build towards fault-tolerance

> Focus on near-term applications
Quantum/Classical Hybrid Algorithms

> Access over the cloud
Quantum Computers as co-Processors

Catalysts Complex Materials

N2-activation, H2O-O2, etc High-TC, dichalcogenides, etc

Score +1

Score 0

Max-Cut cost operator

MAX-CUT

1 1

0 1

Quantum Simulation
Variational Quantum Eigensolvers

Quantum Optimization
QAOA

• What are near-term applications? Quantum/classical hybrid algorithms

• How to program hybrid algorithms? The Quil (Quantum Instruction Language) Stack
> Platform Overview
> Instruction Set & Programming Model
> Software Examples

• What is a near-term device?
 > Superconducting circuits
 > Noise in near-term devices

• Open Questions

Outline

Applications (in silico chemistry)

Model Complexity vs Computational
Cost

mean-field DFT RDM Exact
Diagonalization

O(N3) O(N3) O(N9) O(2N)

Perturbation
Theory

O(N5)

Many-Body
(coupled-cluster)

O(N7)

Nature’s exploitation of quantum mechanics
Catalysts Complex Materials DynamicsBond form/break

N2-activation, H2O-O2,
etc

High-TC,
dichalcogenides, etc

S2-breaking, bioactivity,
atmospheric, etc

Solar cell efficiency,
molecular conductors

First Applications: Quantum Variational Eigensolvers

e.g. SCHROCK CATALYST for
NITROGEN FIXATION

1. MOLECULAR DESCRIPTION 2. MAP TO QUBIT REPRESENTATION

e.g. Bravyi-Kitaev or Jordan-Wigner Transform

3. PARAMETERIZED ANSATZ

e.g. Unitary Coupled Cluster
 Variational Adiabatic Ansatz

Wecker, D., et al. (2015). Progress towards practical quantum variational algorithms. Physical Review A, 92(4), 042303.
O'Malley, P. J. J., et al. (2015). Scalable Quantum Simulation of Molecular Energies. arXiv:1512.06860. McClean, J. R. et al. (2015). The theory of variational hybrid quantum-classical algorithms. arXiv:1509.04279.

Peruzzo, A., et al. (2014). A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5.

e.g. HYDROGEN

e.g. Electronic Structure Hamiltonian

PREPARE
QUANTUM

STATE

MEASURE TERM 2

MEASURE TERM N

MEASURE TERM 1

…

QUANTUM PROCESSOR CLASSICAL PROCESSOR

SUM
TERMS

CLASSICAL
OPTIMIZATION OF

ANSATZ
PARAMETER

4. RUN Q.V.E. QUANTUM-CLASSICAL HYBRID ALGORITHM

NP-Hard Optimization on Quantum Computers
First results on polynomial time approximate algorithms with quantum resources

Classical Maximum Cut Problem

Score +1

Score 0

0 1

0 0

Exact
Algorithms

Polynomial
Approximation

Quantum Maximum Cut
cost operator

Classical Maximum Cut
cost operator

Farhi et al. (2014). A Quantum Approximate Optimization Algorithm. arXiv:/1411.4028.
Farhi & Harrow (2015). Quantum Supremacy through the Quantum Approximate Optimization Algorithm. arXiv: 1602.07674

Optimizing Quantum Programs for real HW
Building more efficient encodings of second quantized operators

Bravyi-Kitaev (log(N)-mapping)

Define Molecular
Structure

Electronic Structure
Hamiltonian

Second Quantized
Hamiltonian

Hardware Optimal Mapping:
Coulomb term scaling

BK parity heap Qubit connectivity graph

• What are near-term applications? Quantum/classical hybrid algorithms

• How to program hybrid algorithms? The Quil (Quantum Instruction Language) Stack
> Platform Overview
> Instruction Set & Programming Model
> Software Examples

• What is a near-term device?
 > Superconducting circuits
 > Noise in near-term devices

• Open Questions

Outline

The Quantum Computing Stack

QUANTUM INSTRUCTION
LANGUAGE: Quil

QUANTUM COMPUTER

COMPILER

LIBRARIES & TOOLS: pyQuil

APPLICATIONS: pyVQE & pyQAOA

Client

Server

> Write applications...

> using tools...

> that build quantum programs...

> that compile onto quantum
 hardware...

> that execute on a quantum
 processor.

QUANTUM INSTRUCTION
LANGUAGE: Quil

COMPILER

LIBRARIES & TOOLS: pyQuil

APPLICATIONS: pyQVE & pyQAOA

Client

Server

Bell-state program
from pyquil.quil import Program
import pyquil.qvm as qvm

p = Program(H(0), CNOT(0,1))
qvm.run(p)

 HADAMARD 0
 CNOT 0 1
 MEASURE 0 [0]

QUANTUM
VIRTUAL
MACHINE

QPU

The Programming Model
A Quantum-Classical Hybrid Model

1. N qubits

2. M classical octets (8-bits)
 = 8M total bits

3. A fixed gate set, e.g.

{H(0), CNOT(0,1)...}

. . .

. . .

A Quantum-Classical Hybrid Model

1. N qubits

2. M classical octets (8-bits)
 = 8M total bits

3. A fixed gate set, e.g.

{H(0), CNOT(0,1)...}

. . .

. . .

[0] [2] [3] [4] [5] [6] [7]

A classical octet (8-bits)

X MEASURE

2

0

1

3

4

5

6

7

[1]

X

 X 0
 MEASURE 0 [1]
 JUMP-WHEN @THEN1 [1]
 JUMP @END2
 LABEL @THEN1
 X 7
 LABEL @END2

 4 qubits
1

2

3

0

Controlled by a Quantum Instruction Language (Quil)

The Programming Model

Quil: A Practical Quantum Instruction Language

Programming a Quantum Abstract Machine

 # Bell-state program
 HADAMARD 0
 CNOT 0 1
 MEASURE 0 [0]

1. 8 qubits

[0] [1] [2] [3] [4] [5] [6] [7]

3. 1 classical octet (8-bits)

2. A fixed gate set, e.g. {H(0), CNOT(0,1)...}

H MEASURE

C
N

O
T0

1

2

3

4

5

6

7

Quil: A Practical Quantum Instruction Language

Programming a Quantum Abstract Machine

 #classical control

 X 0
 MEASURE 0 [1]
 JUMP-WHEN @THEN1 [1]
 JUMP @END2
 LABEL @THEN1
 X 7
 LABEL @END2

1. 8 qubits

[0] [2] [3] [4] [5] [6] [7]

3. 8 classical bits

2. A fixed gate set, e.g. {H(0), CNOT(0,1)...}

X MEASURE0

1

2

3

4

5

6

7

[1]

X

Quil: A Practical Quantum Instruction Language

Programming a Quantum Abstract Machine

 #classical loops

 LABEL @START3
 H 0
 MEASURE 0 [1]
 JUMP-WHEN @END4 [1]
 JUMP @START3
 LABEL @END4

1. 8 qubits

[0] [2] [3] [4] [5] [6] [7]

3. 8 classical bits

2. A fixed gate set, e.g. {H(0), CNOT(0,1)...}

H M0

1

2

3

4

5

6

7

[1]

H M H

. . .

Quil: A Practical Quantum Instruction Language

Programming a Quantum Abstract Machine

 # defining gates
 DEFGATE HADAMARD:
 1/sqrt(2), 1/sqrt(2)
 1/sqrt(2),-1/sqrt(2)

 DEFGATE RX(%theta):
 cos(%theta/2),-i*sin(%theta/2)
 -i*sin(%theta/2),cos(%theta/2)

 # parameterized gates

 RX(3.141592653589793) 0
 RX([4-67]) 3

1. 8 qubits

[0] [2] [3] [4] [5] [6] [7]

3. 1 classical octet (8-bits)

2. A fixed gate set, e.g. {H(0), CNOT(0,1)...}

RX(3.14...)0

1

2

3

4

5

6

7

[1]

RX(-)

...

64-bits wide

pyQuil: Python library for writing Quil
from pyquil.quil import Program

import pyquil.qvm as qvm_module

from pyquil.gates import *

qvm = qvm_module.Connection()

p = Program(H(0), CNOT(0, 1)) # create an entangled state

 <pyquil.pyquil.Program object at 0x101ebfb50>

qvm.wavefunction(p)

 [(0.7071067811865475+0j), 0j, 0j, (0.7071067811865475+0j)]

p = Program(H(0)) # create a superposition state

p.measure(0, 0) # measure the qubit into [0]

create loop

prob_inf_loop = Program().quil_while(0, p)

qvm.run(p, [0]) # ask for the result of register [0] back

 [[0]]

Quil: A Practical Quantum Instruction Language
For more info and Quil information see our arXiv white paper

• What are near-term applications? Quantum/classical hybrid algorithms

• How to program hybrid algorithms? The Quil (Quantum Instruction Language) Stack
> Platform Overview
> Instruction Set & Programming Model
> Software Examples

• What is a near-term device?
 > Superconducting circuits
 > Noise in near-term devices

• Open Questions

Outline

Quantum computers directly simulate the molecular
world, a task beyond the reach of all modern computers.

Microwave Quantum Integrated Circuits

 Key Challenges for Scalability

ELECTROMAGNETIC
ISOLATION

RF & DC
WIRING

FUNCTIONAL
PROCESSOR DESIGN

RELIABLE CIRCUIT
PARAMETERS

SUPERCONDUCTING QUBITS
> Long-lived quantum coherence
> Engineered circuit Hamiltonians
> Controlled with digital & RF electronics

+
INTEGRATED CIRCUITS

> Leverage existing semi fab & packaging
> Advanced tools for design & validation
> Promise of low cost and high reliability

RIGETTI COMPUTING PROPRIETARY & CONFIDENTIAL

CONTROL
COMPONENTS

IBM Rigetti Google

ħω0

Superconducting Qubits
Electrical circuits as a two-level quantum (an)-harmonic oscillator

ħω0

H = Q2/2C + Φ2/2L = ħω0(a†a + 1/2)

ħω0

Superconducting Qubits

H = Q2/2C + Φ2/2L = ħω0(a†a + 1/2)

Electrical circuits as a two-level quantum (an)-harmonic oscillator

→ Nonlinear dissipationless inductor
→ Anharmonic energy spectrum
→ Possibility to engineer a two-level system

I = ICsin(φ) → Φ = LJI with LJ = Φ0/2πICcos(φ)
φ = φR - φL

ħω0

Superconducting Qubits

State:
where ᶓ, ᶔ are complex numbers s.t. |ᶓ|^2+|ᶔ|^2 = 1

System: Two-dimensional complex vector-space

Measurement:

Electrical circuits as a two-level quantum (an)-harmonic oscillator

H = Q2/2C + Φ2/2L = ħω0(a†a + 1/2)

I = ICsin(φ) → Φ = LJI with LJ = Φ0/2πICcos(φ)
φ = φR - φL

ħω0

Superconducting Qubits

State:
where ᶓ, ᶔ are complex numbers s.t. |ᶓ|^2+|ᶔ|^2 = 1

System: Two-dimensional complex vector-space

Measurement:

Electrical circuits as a two-level quantum (an)-harmonic oscillator

H = Q2/2C + Φ2/2L = ħω0(a†a + 1/2)

I = ICsin(φ) → Φ = LJI with LJ = Φ0/2πICcos(φ)
φ = φR - φL

Qubit Measurement
→ Readout by probing a linear resonator (ᶫr) coupled to the qubit

Qubit

Dispersive Jaynes-Cummings Hamiltonian:

Resonator Coupling

Qubit: ω01

Resonator: ωR

Drive

Cg

κ

CJ

Qubit Measurement
→ Readout by probing a linear resonator (ᶫr) coupled to the qubit

Qubit

Dispersive Jaynes-Cummings Hamiltonian:

Resonator Coupling

Qubit: ω01

Resonator: ωR

Drive

Cg

κ

CJ

Qubit Measurement
→ Readout by probing a linear resonator (ᶫr) coupled to the qubit

Qubit: ω01

Resonator: ωR

Drive

Cg

κ

CJ

MEASURE 0 [0]

Measurement Pulse ~ 1us Qubit Pulse 10-100’s ns

X 0
MEASURE 0 [0]

Qubit Measurement
→ Readout by probing a linear resonator (ᶫr) coupled to the qubit

Qubit: ω01

Resonator: ωR

Drive

Cg

κ

CJ

MEASURE 0 [0]

Measurement Pulse ~ 1us Qubit Pulse 10-100’s ns

X 0
MEASURE 0 [0]

1
0

1e5 trials

Fidelity =
99% with
single
shot

Measurement histograms

See JPA TTS talk

https://drive.google.com/open?id=0B-fP0JabW8lpVmxweFZncEx1R3c

Noise in Near Term Devices
● Coherent vs. Incoherent Noise

● Markovian Noise
> Preparation errors
> Measurement errors
> Gate errors (the Pauli Channel)
> Relaxation (T1) and Dephasing (T2)

● Non-Markovian Noise aka everything else

● Metrics (fidelity, diamond-norm)

● Procedures: Randomized Benchmarking, Gate Set Tomography

Important Open Questions

TQF = tc / tg x #Q
tc = coherence time
tg = gate time

#Q = number of qubits

TOTAL QUANTUM
FACTOR

> Near-term Benchmarks & Applications
> Quantum Supremacy[1] at

TQF ≅ 100 x 50 = 5k
> Quantum Simulation
> Quantum Optimization

> How to program for sampling supremacy?

> How to program under noise?

> How do we debug quantum-classical hybrids?

[1] Boxio et al. Characterizing Quantum Supremacy in Near-Term Devices arXiv: 1608.00263

[2] Bremner et al. Achieving quantum supremacy with sparse and noisy commuting quantum computations arXiv: 1610.01808

