
Diagrammatic Methods for the Specification and
Verification of Quantum Algorithms

William Zeng

Quantum Group
Department of Computer Science

University of Oxford

Quantum Programming and Circuits Workshop
IQC, University of Waterloo

June, 2015

http://willzeng.com/shared/qcircuitworkshop.pdf

http://willzeng.com/shared/qcircuitworkshop.pdf


Introduction
I Problem: What are appropriate abstractions for describing

quantum algorithms?

Green et al. arXiv 1304.3390
Wecker & Svore arXiv:1402.4467



Introduction
I Problem: What are appropriate abstractions for describing

quantum algorithms?

I Quantum Circuits 2.0

σ

{0, 1}

1√
|S|

1√
|S|

1√
2

f

Green et al. arXiv 1304.3390
Wecker & Svore arXiv:1402.4467



Introduction
I Problem: What are appropriate abstractions for describing

quantum algorithms?

I Quantum Circuits 2.0

σ

{0, 1}

1√
|S|

1√
|S|

1√
2

⇒f

Green et al. arXiv 1304.3390
Wecker & Svore arXiv:1402.4467



Introduction

Quantum Information

FHilb represented by
Quantum Circuits

Selinger arXiv 0908.3347



Introduction

Quantum Information

FHilb represented by
Quantum Circuits

Abstract Process Theories

†-SMC

†-compact categories
represented by

generalize to

Categorical Diagrams

Selinger arXiv 0908.3347



Introduction

Quantum Information

FHilb represented by
Quantum Circuits

Abstract Process Theories

†-SMC

†-compact categories
represented by

generalize to

Categorical Diagrams

Selinger arXiv 0908.3347



Introduction

Quantum Information

FHilb represented by
Quantum Circuits

Abstract Process Theories

†-SMC

†-compact categories
represented by

generalize to

Categorical Diagrams

Selinger arXiv 0908.3347



Overview

I The Framework: Circuit Diagrams 2.0
I bases ∙ copying/deleting ∙ groups/representations ∙

complementarity ∙ oracles



Overview

I The Framework: Circuit Diagrams 2.0
I bases ∙ copying/deleting ∙ groups/representations ∙

complementarity ∙ oracles

I Example 1. Generalized Deutsch-Jozsa algorithm

I Example 2. The quantum GROUPHOMID algorithm



Overview

I The Framework: Circuit Diagrams 2.0
I bases ∙ copying/deleting ∙ groups/representations ∙

complementarity ∙ oracles

I Example 1. Generalized Deutsch-Jozsa algorithm

I Example 2. The quantum GROUPHOMID algorithm

I Overview of other results.
I algorithms ∙ locality ∙ foundations
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Quantum circuits 1.0

A category C is

{
a set of systems A, B ∈ Ob(C)
a set of processes f : A → B ∈ Arr(C)



Quantum circuits 1.0

A category C is

{
a set of systems A, B ∈ Ob(C)
a set of processes f : A → B ∈ Arr(C)

f : A → B :=

B

f

A

g ◦ f :=

C

g

B

f

A

idA :=

A

A



Quantum circuits 1.0

A category C is

{
a set of systems A, B ∈ Ob(C)
a set of processes f : A → B ∈ Arr(C)

f : A → B :=

B

f

A

g ◦ f :=

C

g

B

f

A

idA :=

A

A

These are sequential processes.



The framework

A monoidal category C has

{
cat. tensor (−⊗−) : C × C → C
a unit object I ∈ Ob(C)



The framework

A monoidal category C has

{
cat. tensor (−⊗−) : C × C → C
a unit object I ∈ Ob(C)

f ⊗ g :=

B

f

A

D

g

C

=

B

f

A

D

g

C

idI :=



The framework

A monoidal category C has

{
cat. tensor (−⊗−) : C × C → C
a unit object I ∈ Ob(C)

f ⊗ g :=

B

f

A

D

g

C

=

B

f

A

D

g

C

idI :=

These are parallel processes.



Sym. Mon. Cats. & quantum circuits

category

B

f

A

C
g

B
f

A

A

A

monoidal
category

f ⊗ g :=

B

f

A

D

g

C

idI :=

states |ψ〉 :=

A

ψ

symmetric
monoidal
categories

B A

BA



Sym. Mon. Cats. & quantum circuits

category

B

f

A

C
g

B
f

A

A

A

monoidal
category

f ⊗ g :=

B

f

A

D

g

C

idI :=

states |ψ〉 :=

A

ψ

symmetric
monoidal
categories

B A

BA

Quantum Computation
I FHilb: Sym. Mon. Cat.

I Ob(FHilb) = f.d. Hilbert
Spaces

I Arr(FHilb) = linear maps

I ⊗ is the tensor product

I I = C

I States are |ψ〉 : C→ H
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The dagger

A dagger functor † : C → C s.t.

(
f †
)†

= f (1)

(g ◦ f )† = f † ◦ g† (2)

id†A = idH (3)

FHilb is a dagger category with
the usual adjoint.
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This is a scalar 〈φ|ψ〉 : C→ C or
I → I in general and admits a
generalized Born rule.
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These linear maps form a †-special commutative Frobenius algebra. Their
composites are determined entirely by their connectivity, e.g.:

=

I [Coecke et al. 0810.0812] †-(special) commutative Frobenius algebras
on objects in FHilb are eqv. to orthogonal (orthonormal) bases.

I [Evans et al. 0909.4453] †-(special) commutative Frobenius algebras
on objects in Rel are eqv. to groupoids.
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d(A) =

I This is the Hopf law. Two complementary †-SCFA’s that also form a
bialgebra are called strongly complementary.
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Strongly Complementary Bases
I [Kissinger et al. 1203.4988]: Strongly complementary observables in

FHilb are characterized by Abelian groups.

I [Gogioso & WZ]: Pairs of strongly complementary observables
correspond to Fourier transforms between their bases.*
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I From these can construct the internal structure of oracles:

|x〉

|x〉

|y〉

|f (x) ⊕ y〉

Oracle

f

I [WZ & Vicary 1406.1278]: For f to map between bases is a
self-conjugate comonoid homomorphism. Oracles with this
abstract structure are unitary in general.
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Definition (The Deutsch-Jozsa problem)
Given a blackbox function f promised to be either constant or
balanced, identify which.
I Classically we require at most 2N−1 + 1 queries of f
I The quantum algorithm only requires a single query.
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I Let σ be non-trivial irrep. of Z2 i.e. σ(0) = 1, σ(1) = −1.

balanced: f

σ

= 0 constant: f =
x
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Diagrammatic moves allow us to verify the algorithm in generality:

σ

1
|S| f

I Slide up σ†

I Pull σ† through the whitedot

I Neglect the right-side system

I Topological contraction of blackdot

Vicary arXiv 1209.3917
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σ
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Gives the amplitude for the input state
1√
|S|

∑
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at measurement.

What if f is balanced?

σ

f = 0

so the system is never measured in σ.

What if f is constant?
Then

f =
x

⇒

σ

1
|S| f = x

σ

1
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= ±1

So the system is always measured in σ.
Vicary arXiv 1209.3917
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Ex 1. Summary for Deutsch-Josza

I Verify: Abstractly verify the algorithm

I Generalize:
I Abstract definition for balanced generalizes [Høyer Phys. Rev. A

59, 3280 1999] and [Batty, Braunstein, Duncan 0412067].
See [Vicary 1209.3917].

I The algorithm can be executed with complementary rather than
strongly complementary observables
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Ex 2. The GROUPHOMID Algorithm

The General Case: Homomorphism f : G → A

I We generalize with proof by induction via the Structure
Theorem. A = Zp1 ⊕ ... ⊕ Zpk

I [WZ & Vicary 1406.1278] Given types, the quantum algorithm
can identify a group homomorphism in k oracle queries.

I Note that the quantum algorithm depends on the structure of A
while a classical algorithm will depend on the structure of G.

I Theorem [WZ] For large G this algorithm makes a quantum
optimal number of queries, while classical algorithms are lower
bounded by log |G|.



Quantum algorithms: old, generalized and new
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