Diagrammatic Methods for the Specification and Verification of Quantum Algorithms

William Zeng

Quantum Group
Department of Computer Science
University of Oxford

Quantum Programming and Circuits Workshop
IQC, University of Waterloo
June, 2015

Introduction

- Problem: What are appropriate abstractions for describing quantum algorithms?

Low Level
 High Level

\rightarrow

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\hat{H}|\psi\rangle \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \xrightarrow{-\quad-\quad}
$$

Introduction

- Problem: What are appropriate abstractions for describing quantum algorithms?

Low Level
High Level
\rightarrow

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\hat{H}|\psi\rangle \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

mycirc : : Qubit \rightarrow Qubit \rightarrow Circe (Qubit, Qubit) mycirc ab = do
a <- hadamard a
$\mathrm{b}<-$ hadamard b
(abb) <- controlled_not ab
return (a, b)

- Quantum Circuits 2.0

Introduction

- Problem: What are appropriate abstractions for describing quantum algorithms?

Low Level
 High Level

\rightarrow

$$
i \hbar \frac{\partial}{\partial t}|\psi\rangle=\hat{H}|\psi\rangle \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Quantum Circuits 2.0

Introduction

Introduction

Introduction

Introduction

Overview

- The Framework: Circuit Diagrams 2.0
- bases • copying/deleting • groups/representations • complementarity • oracles

Overview

- The Framework: Circuit Diagrams 2.0
- bases • copying/deleting • groups/representations • complementarity • oracles
- Example 1. Generalized Deutsch-Jozsa algorithm
- Example 2. The quantum GROUPHOMID algorithm

Overview

- The Framework: Circuit Diagrams 2.0
- bases • copying/deleting • groups/representations • complementarity • oracles
- Example 1. Generalized Deutsch-Jozsa algorithm
- Example 2. The quantum GROUPHOMID algorithm
- Overview of other results.
- algorithms • locality \cdot foundations
- Outlook.

Quantum circuits 1.0

A category \mathbf{C} is $\left\{\begin{array}{l}\text { a set of systems } A, B \in \mathrm{Ob}(\mathbf{C}) \\ \text { a set of processes } f: A \rightarrow B \in \operatorname{Arr}(\mathbf{C})\end{array}\right.$

Quantum circuits 1.0

A category \mathbf{C} is $\left\{\begin{array}{l}\text { a set of systems } A, B \in \mathrm{Ob}(\mathbf{C}) \\ \text { a set of processes } f: A \rightarrow B \in \operatorname{Arr}(\mathbf{C})\end{array}\right.$

Quantum circuits 1.0

A category \mathbf{C} is $\left\{\begin{array}{l}\text { a set of systems } A, B \in \mathrm{Ob}(\mathbf{C}) \\ \text { a set of processes } f: A \rightarrow B \in \operatorname{Arr}(\mathbf{C})\end{array}\right.$

These are sequential processes.

The framework

A monoidal category \mathbf{C} has $\left\{\begin{array}{c}\text { cat. tensor }(-\otimes-): \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C} \\ \text { a unit object } I \in \mathrm{Ob}(\mathbf{C})\end{array}\right.$

The framework

A monoidal category \mathbf{C} has $\left\{\begin{array}{c}\text { cat. tensor }(-\otimes-): \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C} \\ \text { a unit object } I \in \mathrm{Ob}(\mathbf{C})\end{array}\right.$

The framework

A monoidal category \mathbf{C} has $\left\{\begin{array}{c}\text { cat. tensor }(-\otimes-): \mathbf{C} \times \mathbf{C} \rightarrow \mathbf{C} \\ \text { a unit object } I \in \mathrm{Ob}(\mathbf{C})\end{array}\right.$

These are parallel processes.

Sym. Mon. Cats. \& quantum circuits

category	
monoidal category	$f \otimes g:=\left.\right\|_{\text {布 }} ^{\left.\left.\right\|_{A} ^{B}\right\|_{C} ^{D}} \quad \mathrm{id}_{I}:=$
states	$\|\psi\rangle:=\frac{\left.\right\|^{A}}{\Downarrow}$
symmetric monoidal categories	

Sym. Mon. Cats. \& quantum circuits

Quantum Computation

- FHilb: Sym. Mon. Cat.
- $\mathrm{Ob}(\mathbf{F H i l b})=$ f.d. Hilbert Spaces
- $\operatorname{Arr}(\mathbf{F H i l b})=$ linear maps
- \otimes is the tensor product
- $I=\mathbb{C}$
- States are $|\psi\rangle: \mathbb{C} \rightarrow \mathcal{H}$

Sym. Mon. Cats. \& quantum circuits

category	$\begin{array}{\|cc\|} \hline\left.\right\|^{B} & \square^{C} \\ \hline f & \left.\right\|^{B} \\ \left.\right\|_{A} ^{B} & \left.\right\|_{A} ^{A} \end{array}$
monoidal category	$f \otimes g:=\overbrace{\text { 布 }}^{\left.\left.\right\|_{A} ^{B}\right\|_{C} ^{D}} \quad \mathrm{id}_{I}:=$
states	$\|\psi\rangle:=\frac{\left.\right\|^{A}}{\psi}$
symmetric monoidal categories	

FHilb : Sym. Mon. Cat.
$\mathrm{Ob}(\mathbf{F H i l b})=$ f.d. Hilbert Spaces
$\operatorname{Arr}(\mathbf{F H i l b})=$ linear maps

Sym. Mon. Cats. \& quantum circuits

category	
monoidal category	$f \otimes g:=\left.\left.\left.\right\|_{-} ^{\mid}\right\|_{C} ^{B}\right\|_{C} ^{D} \quad \mathrm{id}_{I}:=$
states	$\|\psi\rangle:=\left.\right\|_{\Downarrow} ^{A}$
symmetric monoidal categories	

FHilb : Sym. Mon. Cat.
$\mathrm{Ob}(\mathbf{F H i l b})=$ f.d. Hilbert Spaces
$\operatorname{Arr}(\mathbf{F H i l b})=$ linear maps

The dagger

A dagger functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$ s.t.

$$
\begin{gather*}
\left(f^{\dagger}\right)^{\dagger}=f \tag{1}\\
(g \circ f)^{\dagger}=f^{\dagger} \circ g^{\dagger} \tag{2}\\
\operatorname{id}_{A}^{\dagger}=\operatorname{id}_{H} \tag{3}
\end{gather*}
$$

FHilb is a dagger category with the usual adjoint.

The dagger

A dagger functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$

The dagger

A dagger functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$

Unitarity:

The dagger

A dagger functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$

On states:

The dagger

A dagger functor $\dagger: \mathbf{C} \rightarrow \mathbf{C}$

On states:

This is a scalar $\langle\phi \mid \psi\rangle: \mathbb{C} \rightarrow \mathbb{C}$ or $I \rightarrow I$ in general and admits a generalized Born rule.

Bases
A \dagger-special Frobenius algebra (A, 审, ठ) obeys:

Bases

Given a finite set S, we use the following diagrams to represent the 'copying' and 'deleting' functions:

Bases

Given a finite set S, we use the following diagrams to represent the 'copying' and 'deleting' functions:

We treat these as linear maps acting on a free vector space, whose basis is S.

Bases

Given a finite set S, we use the following diagrams to represent the 'copying' and 'deleting' functions:

We treat these as linear maps acting on a free vector space, whose basis is S.

Bases and Topology

These linear maps form a \dagger-special commutative Frobenius algebra. Their composites are determined entirely by their connectivity, e.g.:

Bases and Topology

These linear maps form a \dagger-special commutative Frobenius algebra. Their composites are determined entirely by their connectivity, e.g.:

- [Coecke et al. 0810.0812] \dagger-(special) commutative Frobenius algebras on objects in FHilb are eqv. to orthogonal (orthonormal) bases.
- [Evans et al. 0909.4453] \dagger-(special) commutative Frobenius algebras on objects in Rel are eqv. to groupoids.

Complementarity

- [Coecke \& Duncan 0906.4725]: Two \dagger-SCFA's on the same object are complementary when:

Complementarity

- [Coecke \& Duncan 0906.4725]: Two \dagger-SCFA's on the same object are complementary when:

- This is the Hopf law. Two complementary \dagger-SCFA's that also form a bialgebra are called strongly complementary.

Strongly Complementary Bases

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group G, its multiplication is:

Strongly Complementary Bases

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group G, its multiplication is:

We linearize this to obtain the group algebra multiplication.

Strongly Complementary Bases

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group G, its multiplication is:

We linearize this to obtain the group algebra multiplication.

- A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

It is copied by the multiplication vertex.

Strongly Complementary Bases

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group G, its multiplication is:

We linearize this to obtain the group algebra multiplication.

- A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

The adjoint $\mathbb{C} \xrightarrow{\rho} G$ is also copied on the lower legs.

Strongly Complementary Bases

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- [Gogioso \& WZ]: Pairs of strongly complementary observables correspond to Fourier transforms between their bases.*

Unitary Oracles

- From these can construct the internal structure of oracles:

Unitary Oracles

- From these can construct the internal structure of oracles:

- [WZ \& Vicary 1406.1278]: For f to map between bases is a self-conjugate comonoid homomorphism. Oracles with this abstract structure are unitary in general.

Ex 1. The Deutsch-Jozsa Algorithm

- Blackbox function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is balanced when it takes each possible value the same number of times

Ex 1. The Deutsch-Jozsa Algorithm

- Blackbox function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is balanced when it takes each possible value the same number of times

Definition (The Deutsch-Jozsa problem)

Given a blackbox function f promised to be either constant or balanced, identify which.

- Classically we require at most $2^{N-1}+1$ queries of f
- The quantum algorithm only requires a single query.

Ex 1. The Deutsch-Jozsa Algorithm

- Blackbox function $f:\{0,1\}^{N} \rightarrow\{0,1\}$ is balanced when it takes each possible value the same number of times

- Let σ be non-trivial irrep. of \mathbb{Z}_{2} i.e. $\sigma(0)=1, \sigma(1)=-1$.

Ex 1. The Deutsch-Jozsa Algorithm

Ex 1. The Deutsch-Jozsa Algorithm

We can use our higher level description to decompose the algorithm:
$\{0,1\}$

Ex 1. The Deutsch-Jozsa Algorithm

We can use our higher level description to decompose the algorithm:

Ex 1. The Deutsch-Jozsa Algorithm

We can use our higher level description to decompose the algorithm:

Ex 1. The Deutsch-Jozsa Algorithm

We can use our higher level description to decompose the algorithm:

Ex 1. The Deutsch-Jozsa Algorithm

We can use our higher level description to decompose the algorithm:

Ex 1. The Deutsch-Jozsa Algorithm

We can use our higher level description to decompose the algorithm:

$$
\{0,1\}
$$

Ex 1. The Deutsch-Jozsa Algorithm

Diagrammatic moves allow us to verify the algorithm in generality:

Ex 1. The Deutsch-Jozsa Algorithm

Diagrammatic moves allow us to verify the algorithm in generality:

- Slide up σ^{\dagger}

Ex 1. The Deutsch-Jozsa Algorithm

Diagrammatic moves allow us to verify the algorithm in generality:

Ex 1. The Deutsch-Jozsa Algorithm

Diagrammatic moves allow us to verify the algorithm in generality:

- Slide up σ^{\dagger}
- Pull σ^{\dagger} through the whitedot
- Neglect the right-side system

Ex 1. The Deutsch-Jozsa Algorithm

Diagrammatic moves allow us to verify the algorithm in generality:

- Slide up σ^{\dagger}

- Pull σ^{\dagger} through the whitedot
- Neglect the right-side system
- Topological contraction of blackdot

Ex 1. The Deutsch-Jozsa Algorithm

Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}} \sum_{s}|s\rangle$ to be in the σ state at measurement.

Ex 1. The Deutsch-Jozsa Algorithm

Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}} \sum_{s}|s\rangle$ to be in the σ state at measurement.

What if f is balanced?

$$
\begin{aligned}
& \frac{\sigma}{\sigma} \\
& \stackrel{1}{f} \\
& \emptyset
\end{aligned}=0
$$

so the system is never measured in σ.
What if f is constant?
Then

So the system is always measured in σ.

Ex 1. Summary for Deutsch-Josza

- Verify: Abstractly verify the algorithm

Ex 1. Summary for Deutsch-Josza

- Verify: Abstractly verify the algorithm
- Generalize:
- Abstract definition for balanced generalizes [Høyer Phys. Rev. A 59, 3280 1999] and [Batty, Braunstein, Duncan 0412067]. See [Vicary 1209.3917].

Ex 1. Summary for Deutsch-Josza

- Verify: Abstractly verify the algorithm
- Generalize:
- Abstract definition for balanced generalizes [Høyer Phys. Rev. A 59, 3280 1999] and [Batty, Braunstein, Duncan 0412067]. See [Vicary 1209.3917].
- The algorithm can be executed with complementary rather than strongly complementary observables

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- Pull ρ through whitedot

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- Pull ρ through whitedot
- Contract set scalars

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- Pull ρ through whitedot

- Contract set scalars
- Topological equivalence

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- $\rho \circ f$ is an irrep. of G.

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- $\rho \circ f$ is an irrep. of G.

- Choose ρ to be a faithful representation of A.

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- $\rho \circ f$ is an irrep. of G.
- Choose ρ to be a faithful representation of A.
- Then measuring $\rho \circ f$ identifies f (up to isomorphism)

Ex 2. The GROUPHOMID Algorithm

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_{n}.
- $\rho \circ f$ is an irrep. of G.
- Choose ρ to be a faithful representation of A.
- Then measuring $\rho \circ f$ identifies f (up to isomorphism)
- One-dimensional representations are isomorphic only if they are equal.

Ex 2. The GROUPHOMID Algorithm

The General Case: Homomorphism $f: G \rightarrow A$

- We generalize with proof by induction via the Structure Theorem. $A=Z_{p_{1}} \oplus \ldots \oplus Z_{p_{k}}$
- [WZ \& Vicary 1406.1278] Given types, the quantum algorithm can identify a group homomorphism in k oracle queries.

Ex 2. The GROUPHOMID Algorithm

The General Case: Homomorphism $f: G \rightarrow A$

- We generalize with proof by induction via the Structure Theorem. $A=Z_{p_{1}} \oplus \ldots \oplus Z_{p_{k}}$
- [WZ \& Vicary 1406.1278] Given types, the quantum algorithm can identify a group homomorphism in k oracle queries.
- Note that the quantum algorithm depends on the structure of A while a classical algorithm will depend on the structure of G.
- Theorem [WZ] For large G this algorithm makes a quantum optimal number of queries, while classical algorithms are lower bounded by $\log |G|$.

Quantum algorithms: old, generalized and new

Deutsch-Jozsa

Single-shot Grover

Hidden subgroup

Other results

- Automated graphical reasoning:
quantomatic.github.io

Other results

- Automated graphical reasoning: quantomatic.github.io
- [Coecke \& Abramsky 0808.1023]

Teleportation

Other results

- Automated graphical reasoning: quantomatic.github.io
- [Coecke \& Abramsky 0808.1023]

Teleportation

- [Zamdzhiev 2012, WZ \& Gogioso arXiv tmrw] Quantum Secret Sharing
- [Cohn-Gordon 2012] Quantum Bit Commitment

Other results

- Automated graphical reasoning: quantomatic.github.io
- [Coecke \& Abramsky 0808.1023]

Teleportation

- [Zamdzhiev 2012, WZ \& Gogioso arXiv tmrw] Quantum Secret Sharing
- [Cohn-Gordon 2012] Quantum Bit Commitment
- Connections to other theories in \dagger-SMC's: [WZ \& Coecke] DisCo NLP.

Other results

- Automated graphical reasoning: quantomatic.github.io
- [Coecke \& Abramsky 0808.1023]

Teleportation

- [Zamdzhiev 2012, WZ \& Gogioso arXiv tmrw] Quantum Secret Sharing
- [Kissinger et al. 1203.4988, WZ \& Gogioso arXiv tmrw]
Foundations: Mermin Non-locality.
- [WZ 1503.05857] Models of quantum algorithms in sets and relations.
- [Cohn-Gordon 2012] Quantum Bit Commitment
- Connections to other theories in \dagger-SMC's: [WZ \& Coecke] DisCo NLP.

Outlook: Use this knowledge of quantum structure to better advantage in quantum programming.

Other results

- Automated graphical reasoning: quantomatic.github.io
- [Coecke \& Abramsky 0808.1023]

Teleportation

- [Zamdzhiev 2012, WZ \& Gogioso arXiv tmrw] Quantum Secret Sharing
- [Kissinger et al. 1203.4988, WZ \& Gogioso arXiv tmrw]
Foundations: Mermin Non-locality.
- [WZ 1503.05857] Models of quantum algorithms in sets and relations.
- [Cohn-Gordon 2012] Quantum Bit Commitment
- Connections to other theories in \dagger-SMC's: [WZ \& Coecke] DisCo NLP.

Outlook: Use this knowledge of quantum structure to better advantage in quantum programming.

