Diagrammatic Methods for the Specification and Verification of Quantum Algorithms

William Zeng

Quantum Group Department of Computer Science University of Oxford

Quantum Programming and Circuits Workshop IQC, University of Waterloo June, 2015

3

http://willzeng.com/shared/qcircuitworkshop.pdf

Low Level

High Level

Problem: What are appropriate abstractions for describing quantum algorithms?

Low Level

High Level

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Low Level

High Level

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Green et al. arXiv 1304.3390 Wecker & Svore arXiv:1402.4467

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Selinger arXiv 0908.3347

Overview

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- ► The Framework: Circuit Diagrams 2.0
 - bases · copying/deleting · groups/representations · complementarity · oracles

Overview

- ► The Framework: Circuit Diagrams 2.0
 - bases · copying/deleting · groups/representations · complementarity · oracles
- Example 1. Generalized Deutsch-Jozsa algorithm
- Example 2. The quantum GROUPHOMID algorithm

Overview

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- ► The Framework: Circuit Diagrams 2.0
 - bases · copying/deleting · groups/representations · complementarity · oracles
- Example 1. Generalized Deutsch-Jozsa algorithm
- Example 2. The quantum GROUPHOMID algorithm
- Overview of other results.
 - algorithms · locality · foundations
- Outlook.

Quantum circuits 1.0

A *category* **C** is $\begin{cases} a \text{ set of systems } A, B \in Ob(\mathbf{C}) \\ a \text{ set of processes } f : A \to B \in Arr(\mathbf{C}) \end{cases}$

Quantum circuits 1.0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

A *category* **C** is
$$\begin{cases} a \text{ set of systems } A, B \in Ob(\mathbf{C}) \\ a \text{ set of processes } f : A \to B \in Arr(\mathbf{C}) \end{cases}$$

Quantum circuits 1.0

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ つ

These are sequential processes.

The framework

- コン・4回シュービン・4回シューレー

The framework

A monoidal category **C** has $\begin{cases} cat. tensor (- \otimes -) : \mathbf{C} \times \mathbf{C} \to \mathbf{C} \\ a unit object I \in Ob(\mathbf{C}) \end{cases}$

 $id_I :=$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The framework

A monoidal category **C** has $\begin{cases} cat. tensor (- \otimes -) : \mathbf{C} \times \mathbf{C} \to \mathbf{C} \\ a unit object I \in Ob(\mathbf{C}) \end{cases}$

 $id_I :=$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

These are parallel processes.

<□> <圖> < E> < E> E のQ@

Quantum Computation

- FHilb: Sym. Mon. Cat.
- ► Ob(**FHilb**) = f.d. Hilbert Spaces
- Arr(FHilb) = linear maps
- \blacktriangleright \otimes is the tensor product
- ► $I = \mathbb{C}$
- States are $|\psi\rangle : \mathbb{C} \to \mathcal{H}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

FHilb : Sym. Mon. Cat. Ob(FHilb) = f.d. Hilbert Spaces Arr(FHilb) = linear maps

FHilb : Sym. Mon. Cat. Ob(FHilb) = f.d. Hilbert Spaces Arr(FHilb) = linear maps

▲□▶▲□▶▲□▶▲□▶ □ のへで

A *dagger functor* $\dagger : \mathbf{C} \to \mathbf{C}$ s.t.

$$\left(f^{\dagger}\right)^{\dagger} = f$$
 (1)

$$(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$$
 (2)

$$\mathrm{id}_A^\dagger = \mathrm{id}_H \qquad (3)$$

FHilb is a dagger category with the usual adjoint.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

A dagger functor $\dagger: C \to C$

Abramsky & Coecke arXiv 0808.1023

A dagger functor $\dagger: C \to C$

Unitarity:

A dagger functor $\dagger : \mathbf{C} \to \mathbf{C}$

On states:

A dagger functor $\dagger : \mathbf{C} \to \mathbf{C}$

On states:

This is a *scalar* $\langle \phi | \psi \rangle : \mathbb{C} \to \mathbb{C}$ or $I \to I$ in general and admits a generalized Born rule.

UNIVERSITY OF OXFORD

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Bases

A †-special Frobenius algebra (A, \diamond , \flat) obeys:

Bases

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Given a finite set *S*, we use the following diagrams to represent the 'copying' and 'deleting' functions:

Bases

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Given a finite set *S*, we use the following diagrams to represent the 'copying' and 'deleting' functions:

We treat these as linear maps acting on a free vector space, whose basis is *S*.

Bases

Given a finite set *S*, we use the following diagrams to represent the 'copying' and 'deleting' functions:

We treat these as linear maps acting on a free vector space, whose basis is *S*.

Bases and Topology

ション 人口 マイビン 人口 マイロン

These linear maps form a *†*-special commutative Frobenius algebra. Their composites are determined entirely by their connectivity, e.g.:

Bases and Topology

These linear maps form a *†*-special commutative Frobenius algebra. Their composites are determined entirely by their connectivity, e.g.:

- [Coecke et al. 0810.0812] †-(special) commutative Frobenius algebras on objects in FHilb are eqv. to orthogonal (orthonormal) bases.
- [Evans et al. 0909.4453] †-(special) commutative Frobenius algebras on objects in **Rel** are eqv. to groupoids.

Complementarity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

[Coecke & Duncan 0906.4725]: Two †-SCFA's on the same object are complementary when:

Complementarity

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

[Coecke & Duncan 0906.4725]: Two †-SCFA's on the same object are complementary when:

This is the Hopf law. Two complementary †-SCFA's that also form a bialgebra are called strongly complementary.

Strongly Complementary Bases

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group *G*, its multiplication is:

Strongly Complementary Bases

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group *G*, its multiplication is:

We linearize this to obtain the group algebra multiplication.

Strongly Complementary Bases

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group *G*, its multiplication is:

We linearize this to obtain the group algebra multiplication.

• A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

It is copied by the multiplication vertex.

Strongly Complementary Bases

- ► [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- Given a finite group *G*, its multiplication is:

We linearize this to obtain the group algebra multiplication.

• A one-dimensional representation $G \xrightarrow{\rho} \mathbb{C}$ is:

The adjoint $\mathbb{C} \xrightarrow{\rho} G$ is also copied on the lower legs.

Strongly Complementary Bases

- [Kissinger et al. 1203.4988]: Strongly complementary observables in FHilb are characterized by Abelian groups.
- [Gogioso & WZ]: Pairs of strongly complementary observables correspond to Fourier transforms between their bases.*

Unitary Oracles

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

► From these can construct the internal structure of oracles:

Unitary Oracles

ション 人口 マイビン 人口 マイロン

▶ From these can construct the internal structure of oracles:

▶ [WZ & Vicary 1406.1278]: For *f* to map between bases is a self-conjugate comonoid homomorphism. Oracles with this abstract structure are unitary in general.

ション 人口 マイビン 人口 マイロン

► Blackbox function f: {0,1}^N → {0,1} is *balanced* when it takes each possible value the same number of times

ション 人口 マイビン 人口 マイロン

► Blackbox function f : {0,1}^N → {0,1} is balanced when it takes each possible value the same number of times

Definition (The Deutsch-Jozsa problem)

Given a blackbox function f promised to be either *constant* or *balanced*, identify which.

- Classically we require at most $2^{N-1} + 1$ queries of f
- The quantum algorithm only requires a *single* query.

ション 人口 マイビン 人口 マイロン

► Blackbox function f: {0,1}^N → {0,1} is *balanced* when it takes each possible value the same number of times

• Let σ be non-trivial irrep. of \mathbb{Z}_2 i.e. $\sigma(0) = 1, \sigma(1) = -1$.

Vicary arXiv 1209.3917

We can use our higher level description to decompose the algorithm: $\{0, 1\}$ $\frac{1}{\sqrt{|S|}} \bullet$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

We can use our higher level description to decompose the algorithm: $\{0, 1\}$ $\frac{1}{\sqrt{|S|}}$ $\frac{1}{\sqrt{2}}\sigma^{\dagger}$ - Representation (1, -1) of \mathbb{Z}_2

Diagrammatic moves allow us to verify the algorithm in generality:

Diagrammatic moves allow us to verify the algorithm in generality:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Diagrammatic moves allow us to verify the algorithm in generality:

Diagrammatic moves allow us to verify the algorithm in generality:

- Slide up σ^{\dagger}
- Pull σ^{\dagger} through the whitedot
- Neglect the right-side system

UNIVERSITY OF OXFORD

Diagrammatic moves allow us to verify the algorithm in generality:

Neglect the right-side system

Topological contraction of blackdot

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}}\sum_{s}|s\rangle$ to be in the σ state

at measurement.

Gives the amplitude for the input state $\frac{1}{\sqrt{|S|}}\sum_{s}|s\rangle$ to be in the σ state

at measurement.

What if f is balanced?

so the system is never measured in σ .

What if f is constant?

So the system is always measured in σ .

Ex 1. Summary for Deutsch-Josza

► Verify: Abstractly verify the algorithm

Ex 1. Summary for Deutsch-Josza

- Verify: Abstractly verify the algorithm
- Generalize:
 - Abstract definition for balanced generalizes [Høyer Phys. Rev. A 59, 3280 1999] and [Batty, Braunstein, Duncan 0412067].
 See [Vicary 1209.3917].

Ex 1. Summary for Deutsch-Josza

ション 人口 マイビン 人口 マイロン

- Verify: Abstractly verify the algorithm
- Generalize:
 - Abstract definition for balanced generalizes [Høyer Phys. Rev. A 59, 3280 1999] and [Batty, Braunstein, Duncan 0412067].
 See [Vicary 1209.3917].
 - The algorithm can be executed with complementary rather than strongly complementary observables

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

• Pull ρ through whitedot

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

• Pull ρ through whitedot

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Contract set scalars

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let A be a cyclic group \mathbb{Z}_n .

- Pull ρ through whitedot
- Contract set scalars
- Topological equivalence

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

• $\rho \circ f$ is an irrep. of G.

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

- $\rho \circ f$ is an irrep. of G.
- Choose ρ to be a faithful representation of *A*.

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

- $\rho \circ f$ is an irrep. of G.
- Choose ρ to be a faithful representation of *A*.
- ► Then measuring ρ ∘ f identifies f (up to isomorphism)

ション 人口 マイビン 人口 マイロン

- Given finite groups G and A where A is abelian, and a blackbox function $f: G \rightarrow A$ promised to be a group homomorphism, identify f.
- Case: Let *A* be a cyclic group \mathbb{Z}_n .

- $\rho \circ f$ is an irrep. of G.
- Choose ρ to be a faithful representation of *A*.
- ► Then measuring ρ ∘ f identifies f (up to isomorphism)
- One-dimensional representations are isomorphic only if they are equal.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ </p>

The General Case: Homomorphism $f: G \rightarrow A$

- ► We generalize with proof by induction via the Structure Theorem. A = Z_{p1} ⊕ ... ⊕ Z_{pk}
- ► [WZ & Vicary 1406.1278] Given types, the quantum algorithm can identify a group homomorphism in *k* oracle queries.

The General Case: Homomorphism $f: G \rightarrow A$

- ► We generalize with proof by induction via the Structure Theorem. A = Z_{p1} ⊕ ... ⊕ Z_{pk}
- ► [WZ & Vicary 1406.1278] Given types, the quantum algorithm can identify a group homomorphism in *k* oracle queries.
- ► Note that the quantum algorithm depends on the structure of *A* while a classical algorithm will depend on the structure of *G*.
- ▶ **Theorem [WZ]** For large *G* this algorithm makes a quantum optimal number of queries, while classical algorithms are lower bounded by log |*G*|.

Quantum algorithms: old, generalized and new

Vicary arXiv 1209.3917 WZ & Vicary arXiv 1406.1278

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

 Automated graphical reasoning: quantomatic.github.io

Kissinger arXiv:1203.0202 Dixon et al. arXiv 1007.3794

- Automated graphical reasoning: quantomatic.github.io
- [Coecke & Abramsky 0808.1023] Teleportation

- Automated graphical reasoning: quantomatic.github.io
- [Coecke & Abramsky 0808.1023] Teleportation
- [Zamdzhiev 2012, WZ & Gogioso arXiv tmrw] Quantum Secret Sharing
- [Cohn-Gordon 2012] Quantum Bit Commitment

・ロト・日本・日本・日本・日本・日本・日本

- Automated graphical reasoning: quantomatic.github.io
- [Coecke & Abramsky 0808.1023] Teleportation
- [Zamdzhiev 2012, WZ & Gogioso arXiv tmrw] Quantum Secret Sharing
- [Cohn-Gordon 2012] Quantum Bit Commitment
- Connections to other theories in †-SMC's: [WZ & Coecke] DisCo NLP.

ション 人口 マイビン 人口 マイロン

- Automated graphical reasoning: quantomatic.github.io
- [Coecke & Abramsky 0808.1023] Teleportation
- [Zamdzhiev 2012, WZ & Gogioso arXiv tmrw] Quantum Secret Sharing
- [Cohn-Gordon 2012] Quantum Bit Commitment
- Connections to other theories in †-SMC's: [WZ & Coecke] DisCo NLP.

Outlook: Use this knowledge of quantum structure to better advantage in quantum programming.

- [Kissinger et al. 1203.4988, WZ & Gogioso arXiv tmrw]
 Foundations: Mermin Non-locality.
- [WZ 1503.05857] Models of quantum algorithms in sets and relations.

- Automated graphical reasoning: quantomatic.github.io
- [Coecke & Abramsky 0808.1023] Teleportation
- [Zamdzhiev 2012, WZ & Gogioso arXiv tmrw] Quantum Secret Sharing
- [Cohn-Gordon 2012] Quantum Bit Commitment
- Connections to other theories in †-SMC's: [WZ & Coecke] DisCo NLP.

Outlook: Use this knowledge of quantum structure to better advantage in quantum programming.

• [WZ 1503.05857] Models of quantum algorithms in sets and relations.

