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I Oracles are common structures in algorithms. They are
blackboxes with unknown internal structure.

I Most known quantum algorithms are constructed using
quantum oracles, the Deutsch-Josza algorithm, Shor’s
algorithm, Grover’s algorithm...

I Physical realizations of oracles place conditions on their
“unknown” structure. (Unitarity in the quantum case)

Main questions:
I What is the abstract structure of these oracles?
I Can we take advantage of this abstract setting to gain new

insights?



Unitary Oracles
The traditional Deutsch-Joza circuit is:
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Unitary Oracles
Here is its abstract structure:
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Unitary Oracles

This is the oracle’s internal structure:
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Unitary Oracles

This is the oracle’s internal structure:
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Theorem
Oracles with this abstract structure are unitary in general.
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Categorical Quantum Information

Definition: A special †-Frobenius algebra obeys:
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This represents the abstract structure of an observable.



Complementary observables

Definition [Coecke & Duncan]: Two †-Frobenius algebras on the
same object are complementary when:

d(A) =



Complementary observables

Complementary observables in FHilb come from finite abelian
groups

I Copying

:: |g〉 7→ |g〉 ⊗ |g〉

:: |g〉 7→ 1

I Group multiplication

:: |g1〉 ⊗ |g2〉 7→
1

√
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:: |1〉 7→
√
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Classical Maps

Definition:
A classical map f : (A, , ) → (B, , ) obeys:
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Classical Maps

Definition:
A classical map f : (A, , ) → (B, , ) obeys:
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These are self-conjugate comonoid homomorphisms.
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Unitarity Theorem

I Three †-Frobenius algebras, ( , ◦, •)
I A pair are complementary ( and ◦)
I A classical map f : (A, , ) → (B, , )

Produce the unitary morphism:

√
d(A) f



Abstract proof of unitarity
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Unitary Oracles

I We have defined (diagrammatically) an abstract structure
required to make oracles physical.

I This lifts the property of unitarity for quantum oracles to the
more abstract setting of dagger monoidal categories.

I Can we take advantage of this abstract setting to gain new
insights? Yes.
I To develop a new group theoretic quantum algorithm
I To apply result in signal-flow calculus
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The group homomorphism identification problem

I Definition. (Group homomorphism identification problem)
Given finite groups G and A where A is abelian, and a
blackbox function f : G → A promised to be a group
homomorphism, identify f .

I Graphical rules for group representations:
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The group homomorphism identification algorithm

Case: Let A be a cyclic group Zn.
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The group homomorphism identification algorithm

f
A

G

σ
ρ

ρ

I ρ ◦ f is an irreducible representation of A.
I Choose ρ to be a faithful representation of A.
I Then measuring ρ ◦ f identifies f (up to isomorphism)
I One-dimensional representations are isomorphic only if

they are equal.



The group homomorphism identification algorithm

Homomorphism f : G → A

I We generalize with proof by induction via the Structure
Theorem. A = Zp1 ⊕ ... ⊕ Zpk

I Can identify the group homomorphism in k oracle queries.
I The naive classical solution requires a number of queries

equal to the number of factors of G rather than A.



Comparison to the hidden subgroup algorithm

Group ID Hidden Subgroup
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FinRelk
[Baez, Erlebe, Fong 2014]

Definition
The category FinRelk of linear relations is defined in the
following way, for any field k :
I Objects are finite dimensional k -vector spaces
I A morphism f : V → W is a linear relation, defined as a

subspace Sf ↪→ V ⊕ W
I Composition of linear relations f : U → V and g : V → W

is defined as the following subspace of U ⊕ W :

{(u, w)|∃v ∈ V with (u, v) ∈ Sf and (v , w) ∈ Sg}

This defines a linear subspace of U ⊕ W .



The signal-flow calculus FinRelk
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The signal-flow calculus FinRelk

r

Addition Zero Copying Deletion Multiplier
N : k ⊕ k → k : {0} → k ∇ : k → k ⊕ k : k → {0} r : k → k

(a, b, a + b) ∈ N (0, 0) ∈ (a, a, a) ∈ ∇ (a, 0) ∈ (a, ra) ∈ r
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Conclusions (arxiv: 1406.1278)

I Theorem
A pair of complementary dagger-Frobenius algebras, equipped with a
classical map onto one of the algebras, produce a unitary morphism:

√
d(A) f

I Abstract understanding of oracle in quantum computation

I Apply this to develop a new algorithm for the deterministic
identification of group homomorphisms into abelian groups.

I Find the same structure in the theory of signal-flow networks.

I Big Idea: Symmetric monoidal categorical setting productively
unifies process theories at an abstract level.



The Non-Abelian Case
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