Abstract structure of unitary oracles for quantum algorithms

William Zeng1 Jamie Vicary2

1Department of Computer Science
University of Oxford

2Centre for Quantum Technologies, University of Singapore
and Department of Computer Science, University of Oxford

Quantum Physics and Logic, 2014
Unitary Oracles

- Oracles are common structures in algorithms. They are blackboxes with unknown internal structure.
Unitary Oracles

- Oracles are common structures in algorithms. They are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor’s algorithm, Grover’s algorithm...
Unitary Oracles

- Oracles are common structures in algorithms. They are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor’s algorithm, Grover’s algorithm...
- Physical realizations of oracles place conditions on their “unknown” structure. (Unitarity in the quantum case)
Unitary Oracles

Oracles are common structures in algorithms. They are blackboxes with unknown internal structure.

Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor’s algorithm, Grover’s algorithm...

Physical realizations of oracles place conditions on their “unknown” structure. (Unitarity in the quantum case)

Main questions:
Unitary Oracles

- Oracles are common structures in algorithms. They are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor’s algorithm, Grover’s algorithm...
- Physical realizations of oracles place conditions on their “unknown” structure. (Unitarity in the quantum case)

Main questions:
- What is the abstract structure of these oracles?
Unitary Oracles

- Oracles are common structures in algorithms. They are blackboxes with unknown internal structure.
- Most known quantum algorithms are constructed using quantum oracles, the Deutsch-Josza algorithm, Shor’s algorithm, Grover’s algorithm...
- Physical realizations of oracles place conditions on their “unknown” structure. (Unitarity in the quantum case)

Main questions:
- What is the abstract structure of these oracles?
- Can we take advantage of this abstract setting to gain new insights?
Unitary Oracles

The traditional Deutsch-Joza circuit is:

\[\begin{align*}
 |0, 1\rangle & \quad \xrightarrow{U_f} \quad |0, 1\rangle \\
 \mathcal{F}_{\{0,1\}^N} & \quad \text{Oracle} \quad \mathcal{F}_{\{0,1\}^N}
\end{align*} \]
Unitary Oracles

Here is its abstract structure:

\[\frac{1}{\sqrt{|S|}} \]

Oracle

\[f \]

\[\frac{1}{\sqrt{2}} \]

\[\sigma \]
Unitary Oracles

This is the oracle’s internal structure:

\[|x\rangle, |f(x) \oplus y\rangle \]
Unitary Oracles

This is the oracle’s internal structure:

Oracle

Theorem

Oracles with this abstract structure are unitary in general.
Categorical Quantum Information

Definition: A special \dagger-Frobenius algebra obeys:

\[
\begin{align*}
\
\end{align*}
\]
Categorical Quantum Information

Definition: A special \(\dagger\)-Frobenius algebra obeys:

\[
\begin{align*}
\begin{array}{cccc}
\text{Diagram 1} & = & \text{Diagram 2} & = \\
\text{Diagram 3} & = & \text{Diagram 4} & = \\
\end{array}
\end{align*}
\]

This represents the abstract structure of an observable.
Definition [Coecke & Duncan]: Two \dagger-Frobenius algebras on the same object are \textit{complementary} when:

\[
\begin{align*}
\text{d}(A) & =
\end{align*}
\]
Complementary observables

Complementary observables in \textbf{FHilb} come from finite abelian groups

- **Copying**

 \[\bigotimes \; : \; |g\rangle \mapsto |g\rangle \otimes |g\rangle \]

 \[\mathbb{1} \; : \; |g\rangle \mapsto 1 \]

- **Group multiplication**

 \[\bigotimes \; : \; |g_1\rangle \otimes |g_2\rangle \mapsto \frac{1}{\sqrt{D}} |g_1 \oplus g_2\rangle \]

 \[\mathbb{0} \; : \; |1\rangle \mapsto \sqrt{D} |0\rangle \]
Definition:
A classical map \(f : (A, \odot, \bullet) \rightarrow (B, \odot, \circ) \) obeys:
Definition:
A classical map \(f : (A, \odot, \bullet) \rightarrow (B, \odot, \bullet) \) obeys:

These are self-conjugate comonoid homomorphisms.
Unitarity Theorem

- Three \dagger-Frobenius algebras, (\odot, \circ, \bullet)
Unitarity Theorem

- Three \dagger-Frobenius algebras, (\bigcirc, \circ, \bullet)
- A pair are complementary (\bigcirc and \circ)
Unitarity Theorem

- Three \dagger-Frobenius algebras, (\circ, \circ, \bullet)
- A pair are complementary (\circ and \circ)
- A classical map $f : (A, \bullet, \bullet) \rightarrow (B, \wedge, \vee)$

Produce the *unitary* morphism:
Abstract proof of unitarity

d(A)

f

f
Abstract proof of unitarity

d(A)

\[f \]

\[f \]
Abstract proof of unitarity
Abstract proof of unitarity

Frob. Hom.

$d(A)$

f

f
Abstract proof of unitarity
Unitary Oracles

- We have defined (diagrammatically) an abstract structure required to make oracles physical.
Unitary Oracles

- We have defined (diagrammatically) an abstract structure required to make oracles physical.
- This lifts the property of unitarity for quantum oracles to the more abstract setting of dagger monoidal categories.
Unitary Oracles

- We have defined (diagrammatically) an abstract structure required to make oracles physical.
- This lifts the property of unitarity for quantum oracles to the more abstract setting of dagger monoidal categories.
- Can we take advantage of this abstract setting to gain new insights?
Unitary Oracles

- We have defined (diagrammatically) an abstract structure required to make oracles physical.
- This lifts the property of unitarity for quantum oracles to the more abstract setting of dagger monoidal categories.
- Can we take advantage of this abstract setting to gain new insights? Yes.
 - To develop a new group theoretic quantum algorithm
 - To apply result in signal-flow calculus
Definition. (Group homomorphism identification problem)
Given finite groups G and A where A is abelian, and a blackbox function $f : G \rightarrow A$ promised to be a group homomorphism, identify f.
Definition. (Group homomorphism identification problem)
Given finite groups G and A where A is abelian, and a blackbox function $f : G \to A$ promised to be a group homomorphism, identify f.

Group representations are $\rho : G \to \text{Mat}(n)$

<table>
<thead>
<tr>
<th>Abelian</th>
<th>Non-abelian</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>$\text{Mat}(n)$</td>
</tr>
<tr>
<td>ρ</td>
<td>ρ</td>
</tr>
</tbody>
</table>
The group homomorphism identification problem

- **Definition.** (Group homomorphism identification problem)
 Given finite groups G and A where A is abelian, and a blackbox function $f : G \rightarrow A$ promised to be a group homomorphism, identify f.

- Group representations are $\rho : G \rightarrow \text{Mat}(n)$

 ![Abelian Group Representation](image)
 ![Non-abelian Group Representation](image)

- Group Representations as measurements: projections onto a subspace
The group homomorphism identification problem

- **Definition. (Group homomorphism identification problem)**
 Given finite groups G and A where A is abelian, and a blackbox function $f : G \to A$ promised to be a group homomorphism, identify f.

- **Graphical rules for group representations:**

 ![Graphical rules for group representations](image-url)
The group homomorphism identification algorithm

Case: Let A be a cyclic group \mathbb{Z}_n.

- Prepare initial states
- Apply a unitary map
- Measure the left system

\[
\frac{1}{\sqrt{|G|}}
\]

\[
\sqrt{|G|}
\]
The group homomorphism identification algorithm

\[\sigma \xrightarrow{f} G \xrightarrow{A} \rho \]
The group homomorphism identification algorithm

\[\sigma \xrightarrow{f} G \xrightarrow{\rho} \rho \circ f \text{ is an irreducible representation of } A. \]
The group homomorphism identification algorithm

- \(\rho \circ f \) is an irreducible representation of \(A \).
- Choose \(\rho \) to be a faithful representation of \(A \).
The group homomorphism identification algorithm

- $\rho \circ f$ is an irreducible representation of A.
- Choose ρ to be a faithful representation of A.
- Then measuring $\rho \circ f$ identifies f (up to isomorphism)
The group homomorphism identification algorithm

- \(\rho \circ f \) is an irreducible representation of \(A \).
- Choose \(\rho \) to be a faithful representation of \(A \).
- Then measuring \(\rho \circ f \) identifies \(f \) (up to isomorphism).
- One-dimensional representations are isomorphic only if they are equal.
The group homomorphism identification algorithm

Homomorphism $f : G \rightarrow A$

- We generalize with proof by induction via the Structure Theorem. $A = \mathbb{Z}_{p_1} \oplus \ldots \oplus \mathbb{Z}_{p_k}$
- Can identify the group homomorphism in k oracle queries.
- The naive classical solution requires a number of queries equal to the number of factors of G rather than A.
Comparison to the hidden subgroup algorithm

Group ID

Hidden Subgroup

\[\sqrt{|G|} \]

\[\frac{1}{\sqrt{|G|}} \]

\(\sigma \)

\(A \)

\(f \)

\(G \)

\(\rho \)

\[\sqrt{|G|} \]

\[\frac{1}{\sqrt{|G|}} \]

\(\sigma \)

\(X \)

\(f \)

\(G \)
Comparison to the hidden subgroup algorithm

Group ID

\[
\sqrt{|G|} \quad f \quad \frac{1}{\sqrt{|G|}} \quad \rho
\]

Hidden Subgroup

\[
\sqrt{|G|} \quad f \quad \frac{1}{\sqrt{|G|}} \quad \rho
\]

\[
= \sum_{i} \rho_i
\]
Definition

The category FinRel_k of *linear relations* is defined in the following way, for any field k:

- **Objects** are finite dimensional k-vector spaces
Definition

The category \(\text{FinRel}_k \) of linear relations is defined in the following way, for any field \(k \):

- **Objects** are finite dimensional \(k \)-vector spaces
- A **morphism** \(f : V \to W \) is a linear relation, defined as a subspace \(S_f \hookrightarrow V \oplus W \)
Definition
The category \textbf{FinRel}_k of \textit{linear relations} is defined in the following way, for any field \(k \):

- **Objects** are finite dimensional \(k \)-vector spaces
- A **morphism** \(f : V \to W \) is a \textit{linear relation}, defined as a subspace \(S_f \hookrightarrow V \oplus W \)
- **Composition** of linear relations \(f : U \to V \) and \(g : V \to W \) is defined as the following subspace of \(U \oplus W \):

\[
\{(u, w) | \exists v \in V \text{ with } (u, v) \in S_f \text{ and } (v, w) \in S_g \}
\]

This defines a linear subspace of \(U \oplus W \).
The signal-flow calculus FinRel_k

- **Addition**: $\Delta : k \oplus k \to k$

 $(a, b, a + b) \in \Delta$

- **Zero**: $\bullet : \{0\} \to k$

 $(0, 0) \in \bullet$

- **Copying**: $\nabla : k \to k \oplus k$

 $(a, a, a) \in \nabla$

- **Deletion**: $\bigcirc : k \to \{0\}$

 $(a, 0) \in \bigcirc$

- **Multiplier**: $r : k \to k$

 $(a, ra) \in r$
The signal-flow calculus FinRel_k

- **Addition**: $\blacktriangle: k \oplus k \rightarrow k$

 $(a, b, a + b) \in \blacktriangle$

- **Zero**: $\bullet: \{0\} \rightarrow k$

 $(0, 0) \in \bullet$

- **Copying**: $\nabla: k \rightarrow k \oplus k$

 $(a, a, a) \in \nabla$

- **Deletion**: $\circ: k \rightarrow \{0\}$

 $(a, 0) \in \circ$

- **Multiplier**: $\bullet_r: k \rightarrow k$

 $(a, ra) \in \bullet_r$

- **Resistor**

 i

 $v + ir$

 r

 i

 v
Theorem

A pair of complementary dagger-Frobenius algebras, equipped with a classical map onto one of the algebras, produce a unitary morphism:
Conclusions (arxiv: 1406.1278)

Theorem

A pair of complementary dagger-Frobenius algebras, equipped with a classical map onto one of the algebras, produce a unitary morphism:

Abstract understanding of oracle in quantum computation
Conclusions (arxiv: 1406.1278)

- **Theorem**

 A pair of complementary dagger-Frobenius algebras, equipped with a classical map onto one of the algebras, produce a unitary morphism:

 $\sqrt{d(A)}$

 ![Diagram](image)

 - Abstract understanding of oracle in quantum computation
 - Apply this to develop a new algorithm for the deterministic identification of group homomorphisms into abelian groups.
Conclusions (arxiv: 1406.1278)

- **Theorem**

 A pair of complementary dagger-Frobenius algebras, equipped with a classical map onto one of the algebras, produce a unitary morphism:

 \[\sqrt{d(A)} \]

 ![Diagram](image)

- Abstract understanding of oracle in quantum computation

- Apply this to develop a new algorithm for the deterministic identification of group homomorphisms into abelian groups.

- Find the same structure in the theory of signal-flow networks.
Conclusions (arxiv: 1406.1278)

▶ Theorem

A pair of complementary dagger-Frobenius algebras, equipped with a classical map onto one of the algebras, produce a unitary morphism:

\[\sqrt{d(A)} f \]

▶ Abstract understanding of oracle in quantum computation

▶ Apply this to develop a new algorithm for the deterministic identification of group homomorphisms into abelian groups.

▶ Find the same structure in the theory of signal-flow networks.

▶ Big Idea: Symmetric monoidal categorical setting productively unifies process theories at an abstract level.
The Non-Abelian Case

\[
\sqrt{|G|} \sigma \rho^\dagger \psi = \rho^\dagger \rho \psi
\]