Towards Violations of Local

Friendliness with Quantum Computers

arxiv: 2409.15302

- Will Zeng

Jour work w/ Vincent Russo, Forrolen Labib

wignerstriends.com

Outline

- -> Local Franchness megudities
- -> Quantum McShantes volates Local Frenchiness in Exended Wigner's Frend Scenarios

Experimental program Er LF volation

- " and branches ? cas showers
- -> Results: violations on quantum computers
- -> open questrons and next steps

Experimental Metaphysize

Using experiments to explore the space of physical theories.

e.g. Bell's inequality unolations e.g. All us. Mohry Mermin games e.g. 160 duen - Speeler Absoluteness of Local Agency Observed Events

- Local Friendliness

Bong et 2 arXN: 1907.05607

Absoluteness of Observed Events observed events are Offective T.C. not relative to ony one or onything

- Local Frendiness

Local Agency

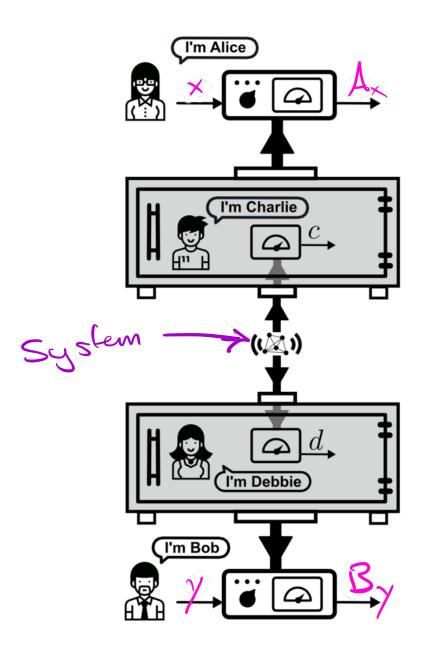
Bong et 2 arXN: 1907.05607

Absoluteness of Observed Events observed events are Offective T.C. not relative to anyone or anything

Local Agency ue can construct molependent variables 1.e. we can make chaices uncorrellated with events outside the past hightone Interventionist Causation
+ Relatvisticacomal arrow)

_ Local Frendliness

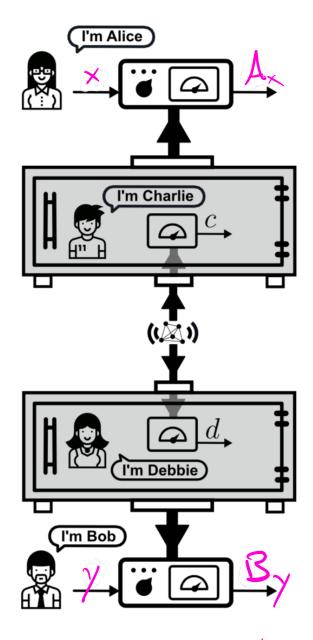
Bong et 2 avXN: 1907.05607


5

Assume t Local Agency Absoluteness of Observed Events _ Local Frendliness Get Inequality bounds on expectation values from Extended Wyner's Frend Experiments

Textoook quantum mechanics violates these bounds

Bong et 2 av XN: 1907.05607


Extended Wyne's Frank Scenario

Ax and By are classical bits

Brukner or X.V: 1804,00749

EWTS violations of Local Friendliness

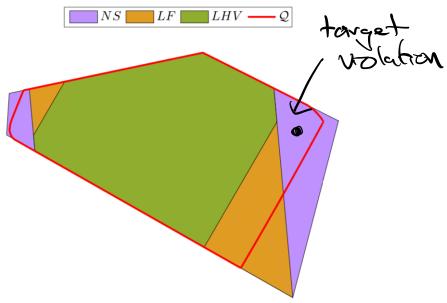
1. Genuine LF inequality:

$$-\langle A_1 \rangle - \langle A_2 \rangle - \langle B_1 \rangle - \langle B_2 \rangle - \langle A_1 B_1 \rangle - 2\langle A_1 B_2 \rangle$$
$$-2\langle A_2 B_1 \rangle + 2\langle A_2 B_2 \rangle - \langle A_2 B_3 \rangle - \langle A_3 B_2 \rangle - \langle A_3 B_3 \rangle - 6 \le 0.$$

2. Bell I_{3322} inequality:

$$-\langle A_1 \rangle + \langle A_2 \rangle + \langle B_1 \rangle - \langle B_2 \rangle + \langle A_1 B_1 \rangle - \langle A_1 B_2 \rangle - \langle A_1 B_3 \rangle$$
$$-\langle A_2 B_1 \rangle + \langle A_2 B_2 \rangle - \langle A_2 B_3 \rangle - \langle A_3 B_1 \rangle - \langle A_3 B_2 \rangle - 4 \le 0.$$

3. Brukner inequality:

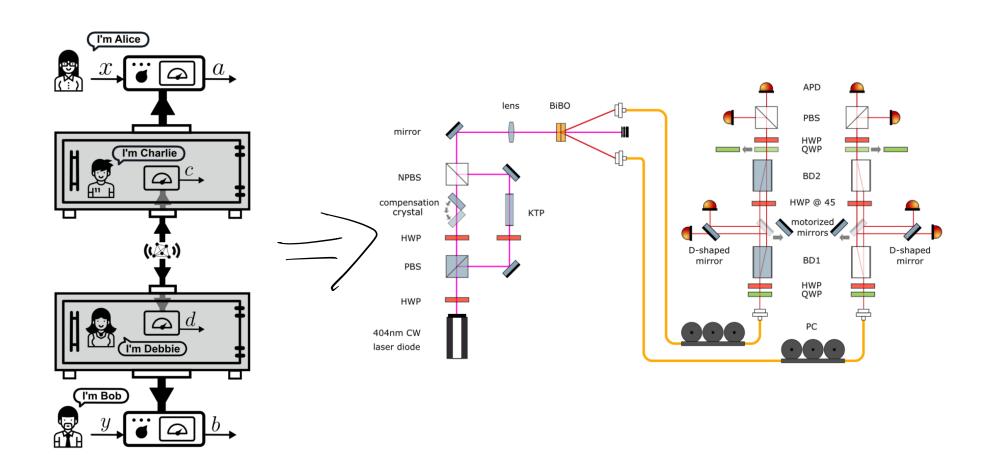

$$\langle A_1 B_1 \rangle - \langle A_1 B_3 \rangle - \langle A_2 B_1 \rangle - \langle A_2 B_3 \rangle - 2 \le 0.$$

4. Semi-Brukner inequality:

$$-\langle A_1 B_2 \rangle + \langle A_1 B_3 \rangle - \langle A_3 B_2 \rangle - \langle A_3 B_3 \rangle - 2 \le 0.$$

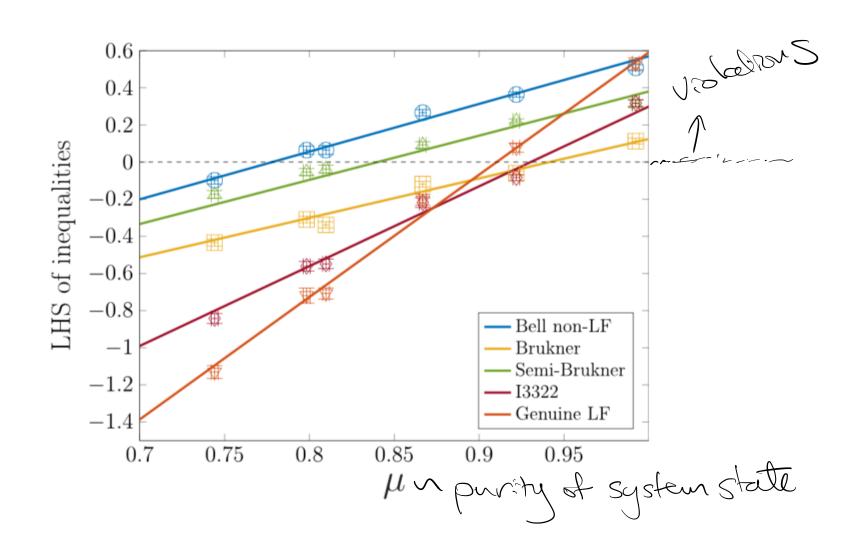
5. Bell non-LF inequality:

$$\langle A_2 B_2 \rangle - \langle A_2 B_3 \rangle - \langle A_3 B_2 \rangle - \langle A_3 B_3 \rangle - 2 \le 0.$$



Bong et 2 avXN: 1907.05607

Quantum Circuit for Local Friendlines Violations = Frend box 14, > = charte 1 Ps = Desbie " PEEK! Alize


11REVERSE - 1

LF Expernental Violation Charlie, Debbre = 1 photon qubit

Bong et 2 av XN: 1907.05607

LF Expernental Violation Charlie Debbre = 1 photon qubit

Bong et 2 av XN: 1907.05607

Interpretations of Bongeral

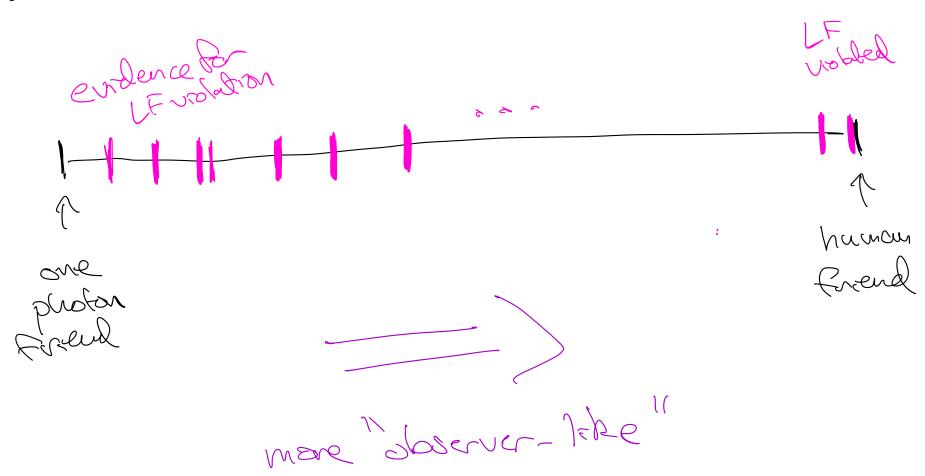
1) Drop Absoluteness of Observed Events

2) Drop Local Agency

(3) Deny a photon 12 au doserver

What is an observer?

Something that has a reality 17


Proposal for a boral Frendliness Expormental Argum

27 violations scale:

human proton Frank

More Sover - Tike Proposal for a boral Frendliness Expormental Asyrum

27 violations scale:

Proposal for a voial Frendliness Expormental Program S (161796 27 violations scale: not useves Namon one Criend photon : Sieul

more sosever- lege

16

Proposal for a boral Frendliness Expormental Asyrum

 $\partial \varphi'(i) N \leq$

27 violations scale:

/vamon one Crend Were governer- Jege 11

AI observes

one profor more "sborver-tike"

AGI similation on a Part tolerant

quantum computer 3 x 1019 bogral quarts 1014 bogral Aprin

Wiseman et al ar XN: 2207,08491

Obese	enver-like Simensions
	more mals
_	more objectivity (e.s. redundance + consensus)
	more agres & Freedom
	More entropy
	more algunu
	mare concious (eg. IIT)

- more irrevisible (e.g. bleascrement Equilibrialish Hypothicis)

Obeserver-like Simensions
- more mass
- more objectivity (e.s. redundance + consensus)
- more agues & Freedom
- More entropy
- more entropy - more alguny
- mare concions legiti
- more irrevisible (e.g. Measurement Equilibrialish Hypothesis)
- higher brouch factor our focus

Taylor & McCalloy War XN: 2308.04494

Kat smedation Namon one Creend photon BF=0

using quantum computers for experiments

volations are not space separated

Branchma

Branches form when superpositions con't be distinguished from classocal moxtures.

System _ measurement States i Device states

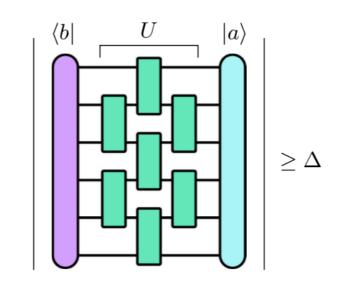
ME

ヤヤフ= こにしむフ

Such that

P:= 177071 15 unds Engushable

Polasoral = [] Icil 1 /4;) Cupil
mixture


Intuition: When

>it I easy to distinguish the Mi)

-> and hard to interfere them

State complexity

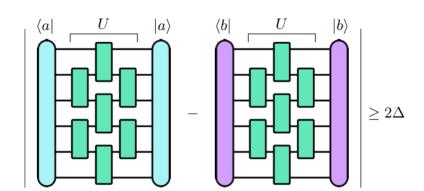
Defor CCU) for two states (a) and (b) is the minimum number of gates (one and two qubit) needed to salafy:

e.g. for L=1, V maps 107 to e'19/107
Proposed 2nd (aw for State complexity

Distinguishability Complexity and Interference Complexity

a measurable out come change.

Definition 2 The distinguishability complexity $C_D(|a\rangle, |b\rangle, \Delta)$ is the minimum number of gates in any circuit U satisfying $|P(m|U|a\rangle) - P(m|U|b\rangle)| \geq \Delta$, where m is any local product-state outcome on some or all of the qubits, and $P(m|\psi\rangle)$ is the probability of that outcome given the state $|\psi\rangle$.

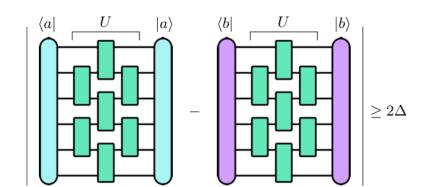

Taylor & McCulloyle arXiv: 2308.04494 Acuruson, Atra, Sussian arXiv: 2009.07450 Distorynishability Complexity and Interference Complexity

Smallest unitary that causes a measurable out come change.

Definition 2 The distinguishability complexity $C_D(|a\rangle, |b\rangle, \Delta)$ is the minimum number of gates in any circuit U satisfying $|P(m|U|a\rangle) - P(m|U|b\rangle)| \geq \Delta$, where m is any local product-state outcome on some or all of the qubits, and $P(m||\psi\rangle)$ is the probability of that outcome given the state $|\psi\rangle$.

· Up to a constant of B T

Definition 3 The distinguishability complexity proxy $C_{\tilde{D}}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfying $|\langle a|U|a\rangle - \langle b|U|b\rangle| \geq 2\Delta$,


Taylor & McCulloyle arxiv: 2308.04494 Acuruson, Atore, Sussian arxiv: 2009.07450 Distinguishability Complexity

Smallest unitory that causes a measurable outcome change.

Definition 2 The distinguishability complexity $C_D(|a\rangle, |b\rangle, \Delta)$ is the minimum number of gates in any circuit U satisfying $|P(m|U|a\rangle) - P(m|U|b\rangle)| \geq \Delta$, where m is any local product-state outcome on some or all of the qubits, and $P(m|\psi\rangle)$ is the probability of that outcome given the state $|\psi\rangle$.

· Up to a constraint of is I

Definition 3 The distinguishability complexity proxy $C_{\tilde{D}}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfying $|\langle a|U|a\rangle - \langle b|U|b\rangle| \geq 2\Delta$,

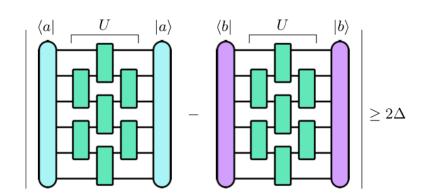
Taylor & McCulloyh arXN: 2308.04994

Acuruson, Atra, Sussian arXIV: 2009.07450

Abolity to measure place into => Ostryuzh (1a) + eix 10)/1/2

and Interference Complexity

Definition 4 The interference complexity $C_{\rm I}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfying $\left|P(m \mid U^{|a\rangle+e^{i\theta}|b\rangle}) - P(m \mid U^{|a\rangle-e^{i\theta}|b\rangle})\right| \geq \Delta$, where θ is any phase, m is any local product-state outcome on some or all of the qubits, and $P(m \mid |\psi\rangle)$ is the probability of that outcome given the state $|\psi\rangle$.

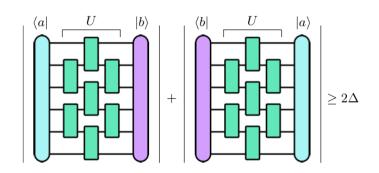

Distinguishability Complexity

Smallest unifory that causes a measurable out come change.

Definition 2 The <u>distinguishability</u> complexity $\mathcal{C}_{\mathrm{D}}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfying $|P(m|U|a\rangle) - P(m|U|b\rangle)| \geq \Delta$, where m is any local product-state outcome on some or all of the qubits, and $P(m \mid |\psi\rangle)$ is the probability of that outcome given the state $|\psi\rangle$.

· Up to a constraint of is I

Definition 3 The distinguishability complexity proxy $\mathcal{C}_{\tilde{D}}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfying $|\langle a|U|a\rangle - \langle b|U|b\rangle| \geq 2\Delta$,


and Interference Complexity

Abolity to measure place into => Ostrogus 4 (1a) + eix 10)/1/2

Definition 4 The interference complexity $C_{\rm I}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfy $ing \left| P(m \mid U^{\frac{|a\rangle + e^{i\theta}|b\rangle}{\sqrt{2}}) - P(m \mid U^{\frac{|a\rangle - e^{i\theta}|b\rangle}{\sqrt{2}}) \right| \ge \Delta, \text{ where }$ θ is any phase, m is any local product-state outcome on some or all of the qubits, and $P(m \mid |\psi\rangle)$ is the probability of that outcome given the state $|\psi\rangle$.

· Up to a constant T

Definition 5 The <u>interference complexity proxy</u> $C_{\tilde{i}}(|a\rangle,|b\rangle,\Delta)$ is the minimum number of gates in any circuit U satisfying $|\langle a|U|b\rangle| + |\langle b|U|a\rangle| \geq 2\Delta$,

Taylor & McCulloyle arXN: 2308.04494

Aarenson, Afra, Susshing arXIV: 2009.07450

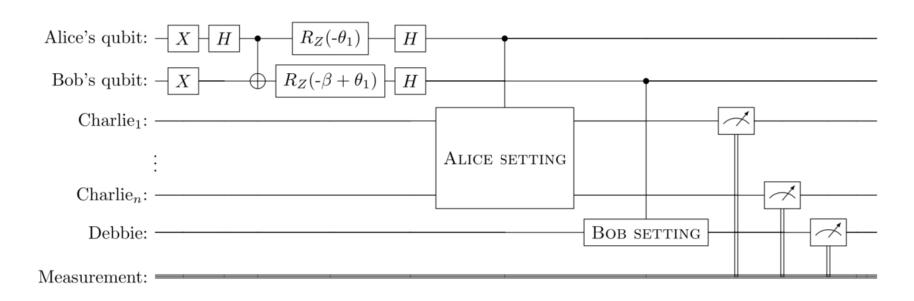
Observer metrz: Branch Factor

· Ponter states: 1407 and 14,7

Dorn Branch Factor, Let 06561

BF(14,7,5):= C_(14,7,14,7,5)-C_(12,7,14,5,5)

thand to interfere and easy to distinguish

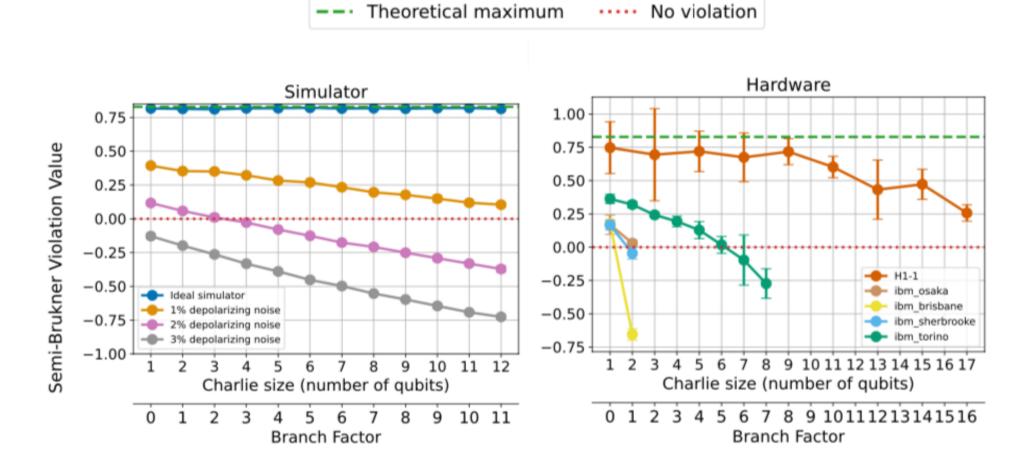

Taylor & McCulloyle arXiv: 2308.04494

Observer metry: Branch factur Ex C1+2 state 1000...)+1111...) G=N C=1 BF = N-1 K. Hear -ran Don Ex Produt + van Dan of all ...) + B/M> C_{I}^{\perp} O(exp(N)) $C_{D} = O(1)$

Taylor & McCulloyle arXIV: 2308.04494

Quantum Circuit Est LF Vistalions

Obs metrix = broanch Ractor
Friend States = 105 and 115

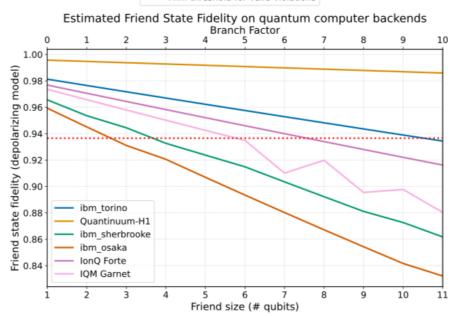


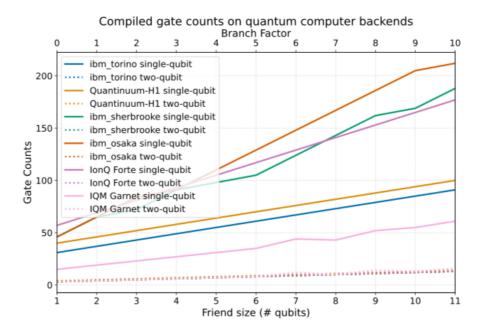
Semi-Brukuer nequality

 $\langle A_2 B_2 \rangle - \langle A_2 B_3 \rangle - \langle A_3 B_2 \rangle - \langle A_3 B_3 \rangle - 2 \le 0.$

choosing openial bases for Hice/ Bob settings gives max undallien.
V 6.828

Results




arxiv: 2409.15302

Valading our prepared branch factor > Frend state terret 1747 = (1767 + 174,7)/02 but w/ noise re propere p > Fidely LAMPIND & bush of me bretoned MD) Sem=-Brukner X:= <AzBz>- <AzBz $\langle A_i B_j \rangle = q \langle A_i B_j \rangle^{\text{valid}} + (1 - q) \langle A_i B_j \rangle^{\text{invalid}}$ Assume west case => measured X Z 8-60/ to ensure volations max \$ of 0.828 means Frend state 9 2 ~ 93.6% Fodelity

Valdaty Branch Fockers

····· Min. threshold for valid violations

Next Steps

- > Mare Date on better QPOC
- > Con we calculate the branch factors for meaningful physical systems, e.g. photodetectors, brans, etc.
- 7 other observer metrics potentially w/other experimental setups e.g. mals superposition
 - > closing loopholes w/ spacelike separation

arxiv: 2409.15302